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Abstract

Three-dimensional concentrated vortices with vertical extensions throughout the whole troposphere and diameters

corresponding to the sub-synoptic gradient wind regime are studied. In particular we focus on mechanisms that
maintain the vertical coherent structure of such vortices within a baroclinic shear flow. Using matched asymptotic
methods we derive equations for the horizontal velocity of the vertically oriented centerline of the vortices. We find that

the vortices are not only advected by the background flow but that also their movement is influenced by diabatic effects.
In this fashion, an initially vertically coherent vortex can be stabilized by diabatic effects even within a baroclinic shear
flow.
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1. Introduction

Eady [1] showed in his famous paper ‘Long waves and
cyclone waves’ that within a stationary, zonal, and
baroclinic background flow unstable waves travel with
the mean unperturbed current. However, recent

numerical and analytical studies have shown that the
motion of geophysical vortices may be modified by
various physical factors. For example, the secondary

circulation (
- gyres) generated by vortices owing to the

- effect results in a self-induced translation relative to a
uniform background flow. It has also been shown

numerically by Raymond and Jiang [2] that factors such
as latent heat affect the propagation of potential vorti-
city anomalies in such a way that they are able to

propagate independently of the advecting wind. In this
paper we study analytically the influence of diabatic
effects on the motion of vortices. The derived results
may contribute to a deeper understanding of cyclogen-

esis and the propagation of strong storms.

2. Governing equations

The starting points of derivation are the non-

dimensional primitive equations consisting of mass
continuity, thermodynamic equation, and momentum

equations:
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The variables ~�h, !, �, p, and � are functions of (~x, z,
t) space and represent the horizontal and vertical velo-
cities, density, pressure, and potential temperature,

respectively. ~� and  are the vector of earth rotation and
the ratio of specific heats. The variable S denotes a
diabatic source term. The derivation of the non-dimen-

sional equations is carried out using well-defined
characteristic atmospheric values, independently of the
characteristic length and time scales of any particular

phenomena [3,4]. From considerations of a few universal
non-dimensional parameters Klein [3] identifies a small
parameter � ranging between 1

6 � � � 18 in typical atmo-
spheric flows. Relating � to the dimensionless numbers
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proposes a distinguished limit � � 1
Ro �

ffiffiffiffiffi
M
p

�
ffiffiffiffiffiffi
Fr
p

,
Sr � 1 which serves as a basis for the asymptotic analysis.

In the subsequent derivations we study the movement
of the vortices within a moving frame of reference with
its origin located at the vortex center. Hence, with
~x ¼ ��2~Xþ~~x we change into a (~~x, z, t) space where ~X =
(X, Y) marks the position of the vortex center. The
asymptotic expansion ansatz for the hydrodynamic

variables U 2 {~�h, w, �, �}is chosen as follows:
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X
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With ansatz (5) the variables U are resolved on hor-
izontal length scales of order O(100 km) whereas the
location of the vortex center is on synoptic scale, i.e. on

length scales of order O(1000 km). If we transform the
coordinates from cartesian into cylindrical polar coor-
dinates with ~x ¼ ��3

2 r cos �, ~y ¼ ��3
2 r sin �, z = z and

�2t ¼ � then ansatz (5) takes the form:

~U ¼
X

�ði=2Þ ~UðiÞ ðr,�,z,�Þ i ¼ 0,1, . . . ,n; n 2 N ð6Þ

From kinematic consideration [5] we obtain the

asymptotic expansion for ~X:

~X ¼ ~Xð0Þð�Þ þ �12~Xð12Þð� ,zÞ þ "22~Xð22Þð� ,zÞ þ . . . ð7Þ

Since we want to study concentrated vortices whose

swirling velocity is faster than the background flow, we
rescale the tangential velocity u� such that
~�h ¼~erur þ~e���

1
2u� and assume that u

ð0Þ
� is axisymmetric

i.e. u
ð0Þ
� ¼ u

ð0Þ
� (r,z,�Þ.

3. Results of asymptotic analysis

In this section we give a short review of the main
results of our asymptotic analysis, which is strongly
influenced by the work of Callegari and Ting [6]. In the

orders Oð�� i
2Þ with i = 8, 7, 6, 5 the vertical momentum

equation yields hydrostatic balance, i.e. @p
ð j
2
Þ

@z ¼ ��ð
j
2Þ with

j = 0, 1, 2, 3. From the Oð�12Þ horizontal momentum
equation one gets the well known gradient wind relation
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From mass continuity we obtain in the orders Oð� j2Þ with
j = 0, 1, 2 zero vertical velocity, i.e. wð

j
2Þ = 0 with j = 0,

1, 2. However, further analysis of the thermodynamic

equation yields in the order Oð�32Þ
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Hence, the vertical velocity is induced by a diabatic

source term Sð
3
2Þ and its magnitude depends on stratifi-

cation @�
ð3
2
Þ

@z . This is a well-known relation in the context

of the ‘weak temperature gradient approximation’, see
e.g. [4,7]. In the subsequent analysis, we assume
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From the Oð�32Þ mass continuity we obtain divergence

flow conditions
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where j = 1,2, . . . n; k ¼ 1,2; T1 ¼ @X
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The boundary conditions for solving Eq. (11) is
obtained by considering theOð�22Þ horizontal momentum
equations in the limit r ! 0 without assuming ‘solid

body rotation’ condition. Hence, for j = 1 the solution
of Eq. (11) is
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Equations for the movement of the vortex center are
obtained using matched asymptotics. For this purpose

we have considered Eq. (12) as an inner solution. The far
field behavior of the leading order flow is obtained by
solving the conservation of quasigeostrophic potential

vorticity q = q (r̂, z, �), i.e. dq
d� ¼ 0 where
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and  ̂ is the stream function describing the geostrophic
wind. The conservation of potential vorticity can be
derived from Eqs. (1)–(4) using the asymptotic ansatz

UQG ¼
P
�iUðiÞQGð�2~x; z; �2tÞ

Seeking a singular vortex solution  ̂s on the f -plane, i.e.

= 0, embedded in a continuous background flow � we
find that the outer stream function  ̂ can be written as

 ̂ ¼  ̂s þ� ¼ �

2�
ln r̂þ� ð14Þ

The variable � = �(z) denotes a vertically varying cir-

culation of the vortex.
Finally, from the matching condition limr!1  =

limr̂!0  ̂ we obtain equations for the movement of the

vortices
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Thus we have shown that the vortex is not being

passively advected by the local steering level winds, but
additionally the movement is due to w0

ð32Þ modified by
diabatic effects. Note, in order to carry out the matching
we had to ensure the convergence of the integrals in

Eq. (12) for large r. It can be shown that in the case of an
algebraic decay for w

ð32Þ
0 (e.g. w

ð32Þ
0 � oð 1r�Þ, � 	 3 as

r !1) and with a sufficiently rapid decay for the

leading order vorticity �(0) (e.g. �(0) � O(exp(�r2)), as r
!1) the inner solution (Eq. (12)) is convergent in the
limit ��r !1 and takes the form
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Further analysis of higher orders in the asymptotics
will yield core structure evolution equations in analogy

with the work by [6]. We will have to verify that the
rapid radial decay assumption on the leading order
vorticity is consistent with these equations.

4. Concluding remarks

We have shown that the movement of vortices is
influenced by diabatic effects to which latent heat release
is a major contributor. Updrafts of moist air and sub-

sequent condensation due to the adiabatic cooling effect
may provide the means to stabilize strong vertically
coherent vortices even in the presence of vertical shear.
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[5] Kurz M. Leitfäden für die Ausbildung im Deutschen

Wetterdienst 8: Synoptische Meteorolgy. Offenbach:

Selbstverlag des Deutschen Wetterdienstes, 1990.

[6] Callegari A, Ting L. Motion of a curved vortex filament

with decaying vortical core and axial velocity. SIAM J

Appl Math 1978;35:148–175.

[7] Sobel A, Nilsson J, Polvani L. The weak temperature

gradient approximation and balanced tropical moisture

waves. J Atmos Sci 2001;58:3650–3665.

E. Mikusky et al. / Third MIT Conference on Computational Fluid and Solid Mechanics768


