
A FEM Navier–Stokes solver coupled to a front-tracking

algorithm for two-phase flows

S. Manservisia,*, E. Aulisab, V. Marrac, R. Scardovellib

aDepartment of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409–1042, USA
bUniversity of Bologna, DIENCA, Laboratory of Montecuccolino, Via dei Colli 16, 40136, Bologna, Italy

cUniversity of Bologna, DIEM, viale Risorgimento 2, 40136, Bologna, Italy

Abstract

A front-tracking algorithm for interfacial flows is reviewed. The interface is described by a set of closed lines. Fixed
markers are set at the crossing points of these lines, while auxiliary markers are defined at the intersection points with

the grid cell faces and inside each computational cell. These auxiliary markers are added and removed dynamically by a
local area conservation algorithm. A Navier–Stokes solver that includes this front-tracking algorithm has been
developed for 2D incompressible two-phase flows based on the finite element method. A variational formulation of the
surface tension term, which removes the singularity of the capillary force, is proposed. Spurious currents are greatly

reduced and oscillating drop dynamics is accurately reproduced.
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1. Introduction

Multiphase and free-surface flows play an important
role in many different natural and industrial processes,

such as, for example, combustion, boiling and con-
densation, sprays, and direct-injection engines. Several
numerical methods have been devised and used to model

complex 2D and 3D flows exhibiting topology changes.
In this paper we report on a new approach by Aulisa et
al. [1,2] that represents an interface line in 2D as a series
of segments connecting an ordered list of interface

markers. The method combines a Lagrangian front-
tracking technique with a local redistribution algorithm
that conserves the area spanned by the interface line and

spreads the markers uniformly along the interface,
eventually by adding and removing them locally when
this is required by the interface evolution. We have also

generalized this algorithm in a rather natural way to
unstructured quadrangular grids, with negligible reduc-
tion in performance [3]. In 3D, the interface lines define

a coarse deforming Lagrangian quadrangular mesh. The
lines are advected by the flow and are reconstructed
separately. We have also developed a FEM solver of the

incompressible Navier–Stokes equations that includes

the front-tracking algorithm. Particular attention has
been given to an accurate and mathematically sound
description of the surface tension term and the asso-

ciated pressure jump. Surface tension forces are
localized on the interface between two fluids and a stable
numerical algorithm is even more difficult in the pre-

sence of high density and viscosity ratios. A weak
formulation of the capillary forces has produced good
results in both stationary problems, with a very low level
of spurious currents, and axisymmetric droplet oscilla-

tions [4].

2. Equation for interface advection

Let � be a bounded domain with the reference phase
contained in the subdomain �1 � � � <3 and �1 the
indicator function for the reference phase

X 1ðt,~xÞ ¼
Z

�1ðtÞ

�ð~x�~x0Þ d~x0 ð1Þ

The integral is over the volume �1(t) bounded by the
interface �1(~x, t). The indicator �1 is one inside �1, zero

outside, discontinuous across the interface and satisfies
*Corresponding author. Tel.: +1 (806) 742 2580; Fax: +1

(806) 742 1112; E-mail: smanserv@koch.math.ttu.edu

751

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



the advection equation D�1(~x, t)/Dt = 0. The solution
of the advection equation can be found as a function of

the initial condition �10 by using the method of the
characteristics

X 1ð~x,tÞ ¼ X 10ð~x0,t0Þ; ~xðtÞ ¼ ~x0 þ
Z t

t0

~uð~xðt0Þ,t0Þdt0

ð2Þ

Then, given the initial position of the interface, we can
follow its motion by simply integrating Eq. (2).

3. Marker advection and redistribution algorithm

The interface �1 is described by a coarse Lagrangian
surface mesh with quadrangular elements. The nodes of
these elements are gathered together to define a set of
closed lines. Each line consists of an ordered list of

points connected by segments. Each list includes some
fixed markers which are located on the nodes of the
quadrangular elements where different lines cross each

other. Intersection markers are added where the seg-
ments cross the cell faces of the computational fixed
grid, while conservation markers are added inside each

computational cell to conserve area and volume. Each
line is advected and reconstructed separately, by moving
all its markers to their new positions. New intersection
markers are then computed. The procedure of removing

and adding internal points is a direct extension to the
three-dimensional space of the 2D technique described
in Aulisa et al. [1]. The result of this procedure is to

substitute the old intersection and area conservation
markers with new area conservation markers which
conserve the area in the direction perpendicular to the

line. More details can be found in Aulisa et al. [2].

4. Numerical tests

We have extensively tested our method with standard
not deforming velocity fields, such as translations and
solid body rotations, and not uniform vorticity fields as

well. In particular, in Cartesian grids the errors we
obtain for the 2D single vortex test) described in Rider et
al. [5], are between two and three orders of magnitude
lower than those reported for standard VOF and level

set methods [1,2]. We have also extended this method to
unstructured quadrangular grids, and for the same test
the deterioration in the performance due to the irregular

shape of the cells is rather modest and contained within
a factor of 2.5. More results on this extension can be
found in Aubert et al. [3]. As an example of the per-

formance of our technique in 3D, we consider an

incompressible flow field that is the superposition of
three two-dimensional single vortex fields, each of them

deforming and stretching a fluid body on a different
coordinate plane, see Aulisa et al. [2]. We position a
cylinder in the above field and advect it with a cosinu-

soidal time modulation with period T = 2, so that at
t = 2 the fluid body should be back to its original
position. In Table 1 we present the volume and geo-

metric errors as a function of both the CFL number and
the grid resolution. In the considered ranges of time
steps and grid spacing the errors are rather good.

5. Dynamics with Navier–Stokes equations

Let � be a 2D domain with Lipswich-continuous
boundary �. The reference phase domain �1 consists of
a series of simply connected open domains with

boundaries in C2 whose union is denoted by �1. Let �1,
�1, �2 and �2 be the constant density and viscosity for
the reference and secondary phases, respectively.
Therefore, the density � and the viscosity � in � can be

defined by �= �1�1 + (1 � �1)�2 and �= �1�1 + (1 �
�1)�2. Finally, let ~u be the velocity field and p the
pressure. If we multiply the incompressible Navier–

Stokes equations by the respective test functions
~� 2 H1ð�Þ; r 2 L2

0ð�Þ and integrate by parts, we getZ
�

�
@~u

@t
�~� d~xþ

Z
�

� ~r~u : ~r~� d~xþ
Z
�

~��ð~u � ~rÞ~u d~x�

Z
�

~r �~�p d~xþ
Z
�1

�~� � ~rk̂ d~xþ
Z
�1

�k̂ ~r �~�d~x ¼

Z
�

~f �~�d~x 8~� 2 H1ð�Þ ð3Þ

Z
�

~ur d~x ¼ 0 8, r 2 L2
0ð�Þ ð4Þ

where � is the surface tension and ~f the body force. The
function k̂ is the extension to �1 of the curvature �,

Table 1

Rotation cylinder test

n CFL Ev Eg

32 1.00 4.17e–3 8.76e–4

32 0.10 6.54e–4 1.53e–5

32 0.01 7.78e–5 5.60e–6

n CFL Ev Eg

16 0.10 1.98e–3 9.94e–5

32 0.10 6.54e–4 1.53e–5

64 0.10 6.25e–5 2.45e–6
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which is defined only on the interface �1. The system (3–
4) must be solved for (~u, p) on � with given coefficients

�, �, k̂. By tracking the evolution of �1 and its surface
�1, as discussed in the previous sections, we can compute
the indicator function �1 (~x, t) and then the density �
and the viscosity �. The extended curvature function k̂ 2
H1(�) may be any function in �1 such as k̂ = �, 8 ~x 2
�1. The interface line is described by the equation ~x =
~x(s) where the parameter s is the arc length, then the
tangent ~t, the normal ~n and the curvature � are related
by~t = d~x/ds and ~	 = � ~n = d2~x/ds2. Since only the first
derivative of ~x(s) is numerically easily available it is

better to solve ~	 = k ~n from its weak formZ
�1

~	 �~�dsþ
Z

�1

d~	

ds
� d~�
ds

ds ¼ ½~t �~��@�1
�
Z

�1

d~	

ds
� d~�
ds

ds

8~v 2 H1ð�1Þ ð5Þ

and then compute �= j~	j. The parameter 
> 0 implies

� 2 H1 (�) and it can be used as a regularization para-
meter when the r.h.s. function d~x/ds is not regular
enough. As 
 ! 0, the exact curvature � can be

recovered.

6. Steady-state solutions and spurious current tests

Dynamical situations close to equilibrium are useful
to detect slowly non-convergent numerical schemes for
surface tension computations which are usually masked

and easily overlooked by flows. All discretizations of the
surface tension term show spurious currents which are
unphysical flows generated near the interface. The

magnitude of these currents can be estimated by the
simulation of a static spherical drop/bubble in zero
gravity [6]. The analytical solution has a zero velocity

field and a pressure jump across the interface due to
surface tension whose value is given by the Laplace’s law
�P = � �. In the weak representation of the Navier–
Stokes equations, Eqs. (3–5), the singular surface ten-

sion term on �1 has been transformed into a regular
volume term over �1 and the spurious currents and the
pressure fluctuations are greatly reduced.

7. Axisymmetrical drop oscillations test

We consider axisymmetrical oscillations of a viscous

drop subject to a small perturbation of the second
spherical harmonics in no-gravity condition. Our
investigation is primarily focused on the period and

damping coefficient of the oscillations. Some preliminary
computations have been made in order to check the
ability of our numerical approach to accurately solve the

problem. A comparison with the theoretical predictions

by Prosperetti [7] and Lamb [8] is presented in Table 2.
The results, obtained with 64 � 64 mesh resolution, are

in good agreement for all density ratios expecially at low
values where they compare favorably with those
obtained with other surface tension representations. The

results are rather sensitive to the curvature computation
and the value 0.001 for the parameter 
 appears to be a
good compromise. In the same table we also compare

the period T of the linear analytical theory with the
computed one for the density ratio �1/�2 = 0.01. The
convergence rate with mesh resolution is very good.

8. Conclusion

In this paper we have briefly reviewed a front-tracking

method for interface advection in the two-dimensional
and three-dimensional space which is able to follow a
fluid body deforming and stretching in a complex vor-
tical flow with great accuracy. We have also briefly

described a new solver for the Navier–Stokes equation
based on the finite element method. Preliminary results
show that spurious currents are greatly reduced and that

bubble oscillations can be reproduced in a very accurate
way.
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