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Abstract

The purpose of this study is to investigate the influence of the size of a discrete solenoidal subspace, generated by the

kernel of the divergence operator, in the dynamic behavior of a stability problem. This problem is associated with the
incompressible and viscous flow around a circular cylinder. The solenoidal subspaces were generated from the quadratic
Taylor-Hood element for the velocity and the linear element for the pressure. These discrete subspaces were char-

acterized according to their dimensions and their ability to catch the dynamics of the problem of linear stability.
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1. Introduction

In this work we investigate the dynamics of the Fre-

chet operator in the field of hydrodynamic stability for
the different types of discretization that are common in
the finite element formulation.

As is known, the law of mass conservation for

incompressible fluids reveals that when the operator is
discretized the solution must be found in a solenoidal
subspace [1]. Previous works have reported some solu-

tions for the Navier–Stokes equations in such subspace
[2,3]. However, these solutions are strongly dependent
on the size of the solenoidal subspace [2,4].

An important question is how to solve the persistence
of the pair eigenvalue-eigenvector in the stability calcu-
lations when the dimension of a solenoidal subspace is

changing. These changes are usually due to the type of
discretization. In particular, in the case of the incom-
pressible fluid flowing around a circular cylinder, we
show that the stability problem is conserved when the

dimension of the solenoidal subspace is highly reduced.
The theorem of espectral decomposition reads: Let A

be a linear self-adjoint differential operator:

A uðxÞ ¼ fðxÞ; a � x � b ð1Þ

where the function f(x) is known. The solution of Eq. (1)
can be written in the form

uðxÞ ¼ A�1fðxÞ ¼
X1
i¼1

ðfðxÞ; uiÞ
�i

uðxÞi ð2Þ

with �1 � �2 � . . . �m � . . . being a countable infinite
number of real eigenvalues and u1, u2, . . . , um, . . . being
a complete orthonormal set of eigen-functions.

This result reveals that the pair:

ð�i; uðxÞiÞ ð3Þ

contains the information of the system dynamics [5,6,7].
Although the formal solution is obtained in the pairs of
Eq. (2), the calculation is very difficult, so other meth-

odologies are prefered.
The present work is organized as follows: in the next

section we define the stability problem. In Section 3 we

review the weak formulation of the linear stability pro-
blem for Navier–Stokes equations. In Section 4 we study
the projection mechanism in the solenoidal subspace.
Finally, we discuss the numerical solutions and results.

2. The problem

We calculated the steady flow around the circular
cylinder, U(x,Re) and the scalar field p = (x, Re)

[8,9,10,11,12]. For the stability calculation it is
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important to study the evolution of a disturbance u of U,
which is governed [7,13] by

@u

@t
þ ðU � rÞuþ ðu � rÞUþ ðu � rÞu ¼ �rpþ 1

Re
r2u

ð4Þ
r � u ¼ 0 ð5Þ

with prescribed initial condition u(x,0) = u0. Equations
(4) and (5) can be written as

@u

@t
¼ Fðu;ReÞ � rp ð6Þ

r � u ¼ 0 ð7Þ

where

Fðu;ReÞ ¼ Fuð0;Re uÞj � u � ru ð8Þ

and

Fuð0;Re uÞj ¼
1

Re
r2u�UðReÞ � ru� u � r UðReÞ ð9Þ

Equation (9) is a linear operator (Frechet). When u is
sufficiently small, we seek for conditions for the stability
of U from the linearized problem

@u

@t
¼ Fuð0;Re uÞj ð10Þ

which arises from Eqs. (6–9) when u�Hu is set to zero.
Expressing u = e�t�, and p[u] = e�tp[�], and inserting in

Eq. (10), it results that � and �(Re) = �(Re) + i�(Re)
satisfy the spectral problem

�� ¼ Fuð0;Re �Þj � rp½�� ð11Þ

When � is a bounded domain there is an infinite number

of isolated �(Re) and all lie inside a parabola opening
out to the left in the complex �(Re) plane. It is known,
from the linearization principle, that the proof of the

stability or instability in a basic flow with respect to
small perturbations is reduced to the complete deter-
mination of the spectrum of the linear problem

represented by Eq. (11) [14,15]. It is well known that, in
the solenoidal subspace,

u 2 H ¼ fu : r � u ¼ 0; u @� ¼ 0; ruj j2
D E

<1
��� g ð12Þ

therefore Eq. (11) becomes [13]:

�� ¼ Fuð0;Re �Þj ð13Þ

3. Weak formulation

A weak formulation of Eq. (11) results in the fol-
lowing equations [16]:

�ðu; vÞ þ aðu; vÞ þ bðv; pÞ þ cðU; u; vÞ þ cðu;U; vÞ ¼ 0

ð14Þ
bðu; qÞ ¼ 0 ð15Þ

where the forms are defined by

aðu; vÞ ¼
Z
�

ru : rv dx ð16Þ

bðv; qÞ ¼ �
Z
�

ðr � vÞq dx ð17Þ

cðu; v;wÞ ¼
Z
�

ðu � rÞv � w dx ð18Þ

The functions v and q belong to the spaces � and �,
where

� ¼ fv 2W1
2ð�Þ : v @�j ¼ 0g ð19Þ

and

� ¼ fq 2 L2ð�Þ :

Z
�

qðxÞ dx ¼ 0g ð20Þ

Here L2 and W1
2 denote, correspondingly, the usual

Sobolev spaces of the square-integrable functions and
the functions whose first derivatives are square-integr-

able. To discretize Eq. (11), we first partition � with the
finite element grid �h, which consists of triangles. On
this grid the spaces are defined as

X2
h ¼ fwh 2 C0ð�Þ whj j�2 P2ðKÞ; 8K 2 �hg ð21Þ

Now, two conforming approximation of �� �, namely
�h � �h, can be built, where �h ¼ ðX2

hÞ
2 \� and �h =

X1
h. This corresponds to the popular Taylor-Hood for-

mulation (P2P1) [17,18]. Using finite elements to solve
Eqs. (14) and (15) results in the generalized eigenvalue
problem. Let us consider w 2 R

n as the vector of nodal
degrees of freedom defining the velocity perturbation u,

and q 2 R
m the vector of degrees of freedoms defining

the pressure perturbation p. The discretized form of Eqs.
(14 and 15) is

Aþ LðwÞ � R

RT 0

� �
w

q

� �
¼ � M 0

0 0

� �
w

q

� �
ð22Þ

where A is a (n � n) sparse viscosity matrix, L(w) a non-
symmetric (n � n) matrix, the sum of the convection
terms, �R is the discrete gradient (n � m) matrix of rank

m, RT is the discrete divergence (m � n) matrix operator,
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and M is a mass (n � n) symmetric matrix. The eigen-
value problem, Eq. (22), is real and non-symmetric, so
eigenvalues will be either real or they can occur in

complex conjugate pairs [9,17]. The spectrum of the
matrix A+ L(w) are the eigenvalues and eigenvectors of
the restriction of this operator A + L(w) in the subspace

of �h, defined by

kerRT ¼ fwh 2 �hj
Z
�

r � whqhdx ¼ 0; 8qh 2 �hg ð23Þ

consisting of vectors whose discrete divergence is zero.

4. Decoupling procedure

The decoupling can be achieved by finding a basis {t1,
. . ., t _n} of ker RT, where _n = dim(RT). It is known that
RT has a full rank, _n = n � m [19]. Having such basis, u

can then be written as

u ¼
X_n

i¼1
_ui ti ¼ TT _u ð24Þ

for some _u 2 R
_n, where T denotes the ( _n � n) matrix with

rows tT1 , . . ., t
T
_n . Since

T � R ¼ ðRT � TTÞT ¼ 0 ð25Þ

and multiplying the first row of Eq. (22) by T, it can be
shown that

_A _u ¼ � _M _u ð26Þ

where _A= T � A � TT and _M= T �M � TT are embedded
in the solenoidal subspace. In order to find a base TT for
the solenoidal subspace we use the relationship ker

R
T = ker (R � RR). The kernel of the operator R � RT

satisfies the following eigenvalue problem:

R � RTt ¼ � t ð27Þ

for the pairs {t1, �1 = 0, . . ., t _n, � _n = 0}.

5. Numerical results

In this section the solenoidal subspace that can be
generated from the quadratic element and its combina-
tions with the linear elements will be analyzed. These

elements are: the linear continuous element (P1), the
linear continuous element with central node (P1+), and
the linear discontinuous element (P1D).

Divergence operators for each one of the combina-
tions of the quadratic element with the linear elements
previously nominated are built. Thus, three solenoidal

subspaces are obtained, as shown in Fig. 1: quadratic-
linear-continuous (J-p1p2), bubble (J-Bu), and quad-
ratic-linear discontinuous (J-dd). It is natural to wonder

about the behavior of a generalized problem of eigen-
values in each one of these subspaces. When projecting
the same jacobian and mass matrix in each one of these
solenoidal subspaces, three generalized eigenvalues

problems of different dimensions show up. Table 1
shows the main discretization parameters for a combi-
nation of between quadratic elements and the

continuous linear with central node P1+ elements. The

Fig. 1. Dimensions of solenoidal subspaces.
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first column shows the triangular meshes used in the

construction of the divergence operator. In the second
column are the number of triangular elements for each
mesh, in the third column are the dimensions of the
velocity spaces, in the fourth column are the dimensions

of the pressure spaces, and in the fifth column are the
dimensions of the solenoidal subspaces.
Figure 1 shows in a logarithmic scale the dimension of

the solenoidal subspace described in Table 1. It can be
observed that the three solenoidal subspaces (dis-
continuous solenoidal subspace RT

P1D, bubble

solenoidal subspace RT
P1þ, and linear-continuous sole-

noidal subspace RT
P2), grow proportionally to its

dimensions and satisfy the relation

dimðRT
P1DÞ < dimðRT

P1þÞ < dimðRT
P2Þ ð28Þ

Figure 2 shows the stability spectra for the same pro-

blem projected in the previously studied subspaces.

When observing the spectra of Fig. 2 we see that the
topological structure of the dangerous eigenvalue

remains invariable. This shows that the solenoidal sub-
space built from the divergent discontinuous operator
catch the dynamic behavior as well as solenoidal sub-

spaces with larger dimensions. For quadratic elements in
velocity and linear elements in pressure the calculation
can be reduced to 83 percent in degrees of freedom. If we

put discontinuous elements in place of the continuous
linear ones the calculation can be reduced to 23 percent
in degrees of freedom.

6. Conclusion

It is very promising that in a very small subspace it is
possible to calculate the stability problem without big
modifications in the topology of eigenvalues. This

property, which could be called the dynamic subsistence
of the discontinuous solenoidal subspace, may have an
extraordinary relevance for calculations with a high

number of degrees of freedom.
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