
A .NET grid computing system applied to Lattice-Boltzmann

Xiaohan Lin*, John R. Williams

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, MA 02139, USA

Abstract

The Lattice-Boltzmann method is an appealing numerical simulation technique for Computational Fluid Dynamics
due to its easy parallelism. Grid Computing has been proposed as a framework for distributing computations over a

network of loosely coupled computers and this paper presents a Grid Computing solution in the context of Lattice-
Boltzmann simulation. Both the Grid middleware and the numerical simulation are developed using Microsoft’s
Common Language Runtime (CLR) and recent standards such as XML, SOAP messaging and Web Services. The goal

is to examine the capability of this middleware layer for managing computing cycles over a network of machines and
solving engineering problems efficiently with a good programming model.

Keywords: Lattice-Boltzman method; Grid Computing; Web Services; Common Language Runtime

1. Introduction

This Grid Computing middleware, described by Lin et
al. [1], targets the problem of distributing numerical

simulations across both computer clusters and more
loosely coupled machines. This style of computing is
often referred to as Grid Computing [2,3]. In Grid

Computing, the assumptions that are usually made in
cluster computing are not valid, including:
. dedicated machines running a single operating sys-

tem with all resources available;
. all machines reside on the same local network and

security is not a concern;
. reliable message passing exists.

In Grid Computing we envisage computers that ‘belong’
to many different owners in different administrative
domains that are willing to provide compute cycles but

perhaps with restrictions on resources, such as disk
access.

In general a user distributes code to be executed

across a network of machines and coordinates the
messaging between the machines so that some compu-
tational goal is achieved. The coordination of the

machines can be achieved by using a master machine.
Here we assume that the Master is a ‘special’ trusted
machine that has coordination and other responsibilities
not shared by the Workers (Fig. 1).

Details of the underlying Grid environment appear in

a previous paper by Lin et al. [1]. This paper describes

the Lattice-Boltzmann simulation using some features of
the Grid system.

2. The Lattice-Boltzmann method

Scientists and engineers usually describe a fluid flow
by introducing a representative control-volume element

on which macroscopic mass and momentum are con-
served. This leads to a ‘macroscopic’ mathematical
model, governed by the Navier–Stokes equation. More
recently, ‘bottom-up’ particle methods, such as Lattice-

Boltzmann, have been formulated based on a micro-
scopic model derived from statistical particle mechanics

*Corresponding author. E-mail: linxh@mit.edu

Fig. 1. Master and worker machines that form a simple com-

putational grid.

734

2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)

have been developed in fluid mechanics [4]. The motion
of the fluid particles is described by particle velocity

distribution functions valid at each element (lattice-grid
point). The method calculates physical variables such as
velocity and pressure by tracking the probability dis-

tribution of fluid particles moving in different directions.
The Lattice-Boltzmann equation is given by [5,6,7]:

fiðxþ ei�t; tþ�tÞ ¼ fiðx; tÞ �
�t

�
ðfiðx; tÞ � f eqi ðx; tÞÞ

ð1Þ

where fi is the concentration of particles that travels with
velocity �ei. With the discrete velocity �ei the particle dis-
tributions travel to the next lattice node in one time step

�t. The relaxation parameter � determines the kinema-
tical viscosity � of the simulated fluid, according to

� ¼ ð2� � 1Þ
6

dx2=dt ð2Þ

The discrete velocity vectors in 2D have the following
value and direction:

ei ¼
dx=dt; i ¼ 0; 1; 3; 5; 7ffiffiffi
2
p

dx=dt; i ¼ 2; 4; 6; 8

�
ð3Þ

where dx/dt is the ration between lattice size and time
step.

The equilibrium distribution function f
eq
i is calculated

as

f eqi ¼ wi�ð1þ 3
eiu

c2
þ 9

2
ðeiu
c2
Þ2 � 3

2
ðuu
c2
Þ ð4Þ

where w0 ¼ 4=9; w1 ¼ w3 ¼ w5 ¼ w7 ¼ 1=9; and w2 ¼ w4

¼ w6 ¼ w8 ¼ 1=36. The macroscopic density � and

velocity vector �u are governed by distribution function

X8
i¼0

fi ¼ � ð5Þ

X8
i¼1

fiei ¼ �u

Lattice-Boltzmann simulates a slightly compressible
fluid; consequently, the fluid pressure p is given by

p ¼ c2s� ð6Þ

where the speed of sound is given by

cs ¼
cffiffiffi
3
p ð7Þ

In the lid-driven cavity flow [8] simulation, the boundary
meets the no-slip condition. The Reynolds number is

1000 and top lid velocity is 0.2 m/s.

3. Domain decomposition

The computational domain is partitioned into sub-
domains to be processed by different worker machines.
There are two methods of decomposition over the 2D

fields of the simulation, 1D or 2D. In the 1D partition,
the whole domain is split in one direction, either vertical
or horizontal slices, whereas in 2D partition the domain

is divided into two directions, resulting in several rec-
tangular sub-domains. Previous work by Satofuka et al.
[9] showed that 2D decomposition is not superior to 1D
decomposition for lid-driven cavity problem in a 2D

domain. In this simulator only 1D vertical decomposi-
tion was studied but this is sufficient to illustrate the
important points.

4. Inter-worker communication

Each sub-domain needs to communicate with its
neighbors to communicate information about the par-
ticles coming in and to send outgoing particle

information to corresponding neighbors. In this parti-
cular problem and domain decomposition scheme, we
need two columns of ‘ghost’ lattice elements in each sub-
domain to store the data for adjacent particles computed

by neighbors at the previous time step. The Grid Com-
puting system provides a convenient programming
model to manage this communication.

Conventionally, using Message Passing Interface
(MPI, [10]) programming, the data are packed into an
array of primitive data types before being sent to

another computing node. MPI is not easy to program
and requires a significant time investment to become
proficient. In the Grid system, we have developed higher

level abstractions to aid the less skilled programmer
master the messaging process. Instead of meticulously
writing code for the outbound data, using the Grid
system, programmers can send virtually any object

directly:

...
// Identify myself.
if (this.id = = 1)

// Send object ‘‘obj’’ to ‘‘2’’.
this.SendObj(2, obj);
...

The simulation program maintains a ‘particle’ class.
At the end of each time step when ‘ghost’ particles need
to be exchanged, each worker simply sends out the two

columns of particle objects to its two neighbors. Each
particle may contain many types of data but this is
handled transparently.

Receiving an object is also very different in our

X. Lin, J.R. Williams / Third MIT Conference on Computational Fluid and Solid Mechanics 735

system, compared with MPI. A data type, ‘InBox’, is
provided as a container for receiving objects. The InBox

acts as a message buffer with queuing characteristics that
can easily be set by changing the InBox’s instance fields.
For example, InBox.order specifies how arrived objects

line up:

...
//First in first out.
inBox1.order=InBox.FIFO;
//Only preserve the last object.
inBox2.order=InBox.LAST;
...
//Oldest object.
obj1=inBox1.pop();
//Last object.
Obj2=inBox2.pop();
...

We can achieve blocking receiving, as in MPI, by
modifying InBox.mode:

...
//Blocking receiving.
inBox1.mode =InBox.BLOCKING;
//Non-blocking
inBox2.mode=InBox.NONBLOCKING;
...
//Blocked here if no object.
obj1=inBox1.pop();

//Always return immediately,
//null if no object.
Obj2=inBox2.pop();
...

Event hooks are built into the framework to allow
process-upon-receipt using the event handling mechan-
ism in C#. In this case the inbox.Ereceiving delegate

will be fired upon message receipt. In the example below
we bind our own function ‘receiving’ to the event
handler list so that it will be fired:

{
...
//Add event handler.
inBox1.Ereceiving +=
System.EventHandler(receiving);

...
}
// user defined function
private void receiving(...,...)
{

//handle the event.
...

}

In the simulation, we use blocking and first-in-first-out

inbox property to receive ‘ghost’ particles.

5. Expose the result in real-time

The results are stored in a ‘Proxy’ machine in a form

called ‘Net Application Domain Globals’ or NAD glo-
bals [1]. NAD globals are different from the inter worker
communication data since they are accessible from the

Internet via Web Services and SOAP messaging. The
Grid system gives users the power to access data
from virtually everywhere on the Web in a machine-
independent manner. In the simulation here, a real-time

Graphical User Interface (GUI) program was written to
monitor the velocity distribution in an intuitive way. In
Fig. 2, velocity is profiled from low to high with color

from blue to purple. The lattice size is 400 � 400, divided
into eight sub-domains. The gray lines denote the sub-
domain boundaries. The lid is at the top boundary.

6. Discussion

One concern in programming using high-level
abstractions is that the computational speed of execu-
tion is degraded. In particular the efficiency of .NET and

the CLR have rarely been tested in high performance
computing. The CLR code is compiled to Intermediate
Language code (IL) similar to Java byte code. This

means that we can distribute IL assemblies to various

Fig. 2. A real-time GUI client program for lid-driven cavity

flow simulator.

X. Lin, J.R. Williams / Third MIT Conference on Computational Fluid and Solid Mechanics736

computer architectures because it is then compiled

locally into executable code. However, there is a time
penalty for this compilation. To address the efficiency of
C# code in numerical computations, a scheme similar
to the one Matlab uses was introduced. Manipulation of

large volume data was moved to routines developed in C
code.
This scheme was tested in the simple scenario of

computing the matrix product of two square matrices.
The function was wrapped into the ‘Matrix’ data type.
This data type is seen on the third level of GridLib. The

usage of this function is shown below:

...
Matrix m1, m2, m3;
...
m3=Matrix.product(m1, m2);
...

An experiment was developed to measure the efficiency
of different code (Fig. 3).
Three types of code were studied, namely: natively

compiled code, pure CLR code using primitive types
(arrays of double precision values) and CLR code with
advanced data types (linked-list of objects). The time

cost for different size of matrix and different program-
ming methods are plotted in Fig. 31. Not surprisingly,
the native code-based matrix manipulation is the most
efficient one. The difference between CLR code using

primitive data types and native code is approximately
doubled in CLR code, but still within the same order of
magnitude. Thus, CLR code can be regarded as ‘mod-

erately efficient’.
The inter-worker communication is through a SOAP

channel, which is considered slower than tightly packed

data directly through network connection. This has been

tested and is not a significant issue in solving lid-driven
cavity problems by the Lattice-Boltzmann method. The

simulator shows almost linear speedup until the sub-
domain is too thin (50:1 for high/width ration).

Note

1 Time measured is only the time for product calculation.

7. Conclusions

The Grid Computing system has been successfully

used in simulating cavity flow by the Lattice-Boltzmann
method. The quick development and runtime efficiency
of the simulator showed that the Grid Computing

environment is promising for some engineering
problems.

References

[1] Lin X, Williams JR. A parallel computing framework for

computer cluster. In: The 16th IASTED International

Conference on Parallel and Distributed Computing and

Systems, Cambridge, MA, 9–11 Nov, T. Gonzalez, editor

2004.

[2] Foster I, Kesselman C, Nick J, Tuecke S. The Physiology

of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration. Globus Alliance, http://

www.globus.org/research/papers/ogsa.pdf

[3] Foster I, Kesselman C, Nick J, Tuecke S. The Anatomy of

the Grid-Enabling Scalable Virtual Organizations. Int J of

High Performance Computing Applications 2001;15:200–

222.

[4] Chen S, Doolen GD. Lattice Boltzmann method for fluid

flows. Annual Rev Fluid Mech 1998;30:329–364.

[5] Chen H, Chen S, Matthaeus WH. Recovery of the

Navier–Stokes equation using a lattice-gas Boltzmann

method. Phys Rev A 1992;45:5539–5542.

[6] Qian YH, D’Humieres D, Lallemand P. Lattice BGK

models for Navier–Stokes equations. Europhys Lett

1992;17:479–484.

[7] Bhatnagar PL, Gross EP, Krook M. A model for collision

processes in gases. I. Small amplitude processes in charged

and neutral one-component systems. Phys Rev

1954;94:511–525.

[8] Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation

of cavity flow by the lattice Boltzmann method. J Comput

Phys 1995;118:329–347.

[9] Satofuka N, Nishioka T. Parallelization of lattice Boltz-

mann method for incompressible flow computations.

Comput Mech 1999;23:164–171.

[10] The MPI Forum. MPI: a message passing interface. In:

Proc of Supercomputing ’93, Portland, Oregon, 1993, pp.

878–883.

Fig. 3. Comparison of native C, C# with primitive types, and

C# with complex types for matrix multiplication.

X. Lin, J.R. Williams / Third MIT Conference on Computational Fluid and Solid Mechanics 737

