
Three-dimensional numerical modelling of curved open channel

using nonhydrostatic turbulent finite element solver for free-surface

flows

Célestin Leupia,*, Edie Migliob, Mustafa S. Altinakarc

a ISE-STI-LIN, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
b Politecnico di Milano, Dipartimento di Matematica ‘F. Brioschi’, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

cNCCHE, The University of Mississipi, Carrier Hall Room 102 University, MS 38677, USA

Abstract

A novel three-dimensional model for a free-surface without the conventional hydrostatic pressure assumption has

been applied to simulate the curved channel flows. Using the unstructured grid the finite element solver adopts the so-
called Raviart-Thomas finite element in the horizontal plane and the conventional linear galerkin finite element in the
vertical direction. The fixed strata system is used in the vertical plane and this procedure allows accurate grid resolution

at the bed and the free-surface. A time-marching scheme is achieved by using the fractional three-step semi-implicit
method while the characteristic method is used for the computation of convective terms. A new algorithm is used for the
k � � turbulence solver, and the related algebraic eddy coefficients are modified to account for some anisotropic and the
related secondary effects appearing in the curved open channels flows. The model is applied successfully to the three-

dimensional unsteady curved open channel flow for which experimental data are available for comparison.
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1. Introduction

Nowadays with the increasing computer power, three-

dimensional (3D) computations have become a practical
proposition and they are often used to simulate hydro-
dynamic flow in natural water systems. The 3D flow in a

curved open channel is a subject of significant impor-
tance in large numbers of hydraulic flows. The physical
phenomena characterizing such flows is important for

environmental hydraulic engineering. The main flow
while passing around a bend generates secondary cur-
rents and superelevation of the water surface, due to the
related centrifugal and gravity forces in the 3D helicoi-

dal flow patterns, which, subsequently, influences the
flow behaviour. These secondary flows play an impor-
tant role in the channel flow and for environmental

study. Several researchers have applied 3D models to
simulate curved channel flow, but the 3D nature of the

curved channel phenomenon is still an open question.
The flow fields have been simulated in curved channels
with rectangular or trapezoidal cross sections by

Leschziner et al. [1], De vriend [2], Galmes et al. [3],
Demuren et al. [4], Shimizu et al. [5], Ye et al. [6], and
Morvan et al. [7]. Using the finite volume method on the

unstructured grid, Lai et al. [8] developed a 3D model to
simulate the flow in a meandering channel. Three-
dimensional numerical models have been used by Wu et

al. [9] and Olsen [10] to study the flow structure and
mass transport in a curved open channel. Most of these
3D models employed the rigid-lid concept for the free-
surface treatment. Leschziner et al. [1] indicate that the

rigid lid approximation introduces some errors espe-
cially in strongly curved open channel flows. Xiabo et al.
[11] have used the finite element model with conformal

mesh to simulate a 3D unsteady curved open channel
introducing buoyant flow and heat transfer, the stan-
dard k � E turbulence model and the non-hydrostatic

pressure. However, the free-surface position is not
tracked and the conformal mesh could perform poorly
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for some complicated bathymetry. Linear models with
the hydrostatic pressure (i.e. quasi-3D or other depth-

integrated flow models), and the standard k � E model
based on an isotropic eddy viscosity assumption, appear
to be deficient in predicting complex turbulent flow for

moderately and strongly curved flows.
Leupi et al. [12] proposed a novel approach based on

the finite element conservative formulation using the

fixed strata system for providing an accurate resolution
at the bed and the free-surface. This work aims to apply
a new model to simulate the curved open channel
without the limitations of the hydrostatic pressure lim-

itation and isotropic turbulence linear k � E model.
In this study, the free-surface movement relies on the

integrated continuity equation. The full 3D governing

equations are solved by using an implicit time marching
scheme. The velocity correction method has been
applied to solve non-hydrostatic pressure (which is

included in the momentum equations for incorporation
in the surface elevation) and enforce the (local) mass
conservation. Provisional velocity is solved first without

the pressure term. The final velocity is obtained by
combining the provisional velocity and the pressure
term. Finally, the Euler or Runge-Kutta scheme is used
to obtain a set of algebraic equations from discretiza-

tion, and the system of equations using an implicit
fractional step method (the YOSIDA scheme). An effi-
cient fractional step algorithm from the algorithm of

Mohammadi et al. [13] is introduced for the k � Emodel.
The related modified algebraic eddy viscosity expres-
sions accounts for some anisotropic influences caused by

the streamline curvature effects in the horizontal plane
(see procedure of Leschziner et al. [14] and the damping
effects of the free-surface and solid walls in the vertical
direction [15]. The model is applied to the curved open

channel 3D flows for which experimental data are
available.

2. Governing equations

Consider an incompressible fluid body �̂ in a three-

dimensional time-varying domain bounded by the free-
surface �s given by z = �(x, y, t), where �(x, y, t)
represents the elevation of the free-surface with respect
to the horizontal reference plane xy. The bottom topo-

graphy �b, is given by z = �h(x, y), where h(x, y) is the
distance between the bottom and the horizontal refer-
ence plane xy such that the total water depth at the

generic (x, y) coordinates point at time t is given by

H ðx; y; tÞ ¼ h ðx; yÞ þ � ðx; y; tÞ

The turbulent fluid motion in the (x, y, z) Cartesian

coordinates system is described by the Reynolds-

Averaged Navier–Stokes Equations (RANS). Here the
pressure p can be writen as the sum of a hydrostatic term

ph and a hydrodynamic correction pd = �qd such that:

p ðx; tÞ ¼ ph þ pd ¼ pa þ g�oð� � zÞ þ g

Z �

z

��dzþ �qdðx; tÞ

ð1Þ

The related 3D nonhydrostatic system reads:
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where U = (u, v)T is the horizontal velocity vector,
�xy = (�u, � �v)T is the vector of body forces with � the

Coriolis parameter, g is the gravitational acceleration, �h
and �v are respectively the horizontal and vertical tur-
bulent viscosities [16], H� is the 3D divergence operator,
D/Dt represents the material derivative, and Hxy� is the
surface divergence operator. �, �0 are the fluid density
and the water density, respectively.
The quantities k and " are described by a generic form

of equations [16,17]:
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"
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The turbulent constants’ values are c1 = 0.126, c2 =

0.07, c� = 0.09, c� = 1.92.
The production term G is represented by the squared

shear [8]

G ¼ 1

2
rVk k þ rVk kT


 �2
ð8Þ

where k�k represents the Euclidian norm and V is the
three-dimensional velocity field. Integrating the con-

tinuity equation in the z direction and using the suitable
kinematic boundary conditions at the bottom and the
free-surface, we obtain Eq. (5), which describes the

evolution of the free-surface. The suitable boundary
conditions are implemented and the standard wall
functions are applied to the bed according to the

roughness coefficient [9,12].
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In Eq. (3), the turbulent viscosities are

�t ¼ c�
k2

"
; �v ¼ 
v�t; �h ¼ 
v�t ð9Þ

in which �t is the isotropic turbulent viscosity calculated

by the standard k � � model. The streamline curvature
effect 
h derived by Leschziner et al. [14] is expressed as


h ¼
1

1þ 0:57k
2

"2
@Vs

@n þ
Vs

R

� �
Vs

R

ð10Þ

The influence of the free-surface and the bottom,
derived by Naot et al. [15], is expressed as


v ¼
C2

v

ðCv þ 0:15	2Þ ðCv þ 0:2	2Þ
ð11Þ

and

Cv ¼ 1:5� 0:5	1; 	1 ¼
L

z1

� �2

; 	2 ¼
L

z2

� �2

;
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1

z
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Fig. 1. Curved channel representation.
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z2 ¼
1

ðH� zÞ2

* +�1=2
þ0:31662L; L ¼

C3=4
�

k

 !
k3=2

"

ð13Þ

where Vs = downstream velocity component, R = local
radius of curvature of streamline, n = normal distance

from the wall, L= dissipation length, and z1, z2 = root-
mean-squared reciprocal distances from the solid walls
and free-surface respectively.

To obtain a stable turbulence scheme and preserve
positivity of k and �, the set of convection-diffusion

equations are solved using a fractional step scheme [13],
which relies on the splitting of a convection step and a
diffusion step [12,19].

For the overall time-discretization method, the con-
vection terms are discretized using the characteristics
method (Lagrange–Galerkin), by using either a Euler

scheme or the more accurate Runge-Kutta algorithm.
The vertical diffusion terms in the advection-diffusion

Fig. 2. Isocontours of the transversal velocity component Vn of cross-stream at the section m05: (a) measured; (b) nonhydrostatic

solution.
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equation are discretized implicitly. The source terms are
discretitized explicitly, while the sink terms are dis-
cretized using the quasi-implicit form. At each time step
the algebraic system is solved using the conjugate gra-

dient solver.

3. Numerical results

Detailed experimental data for testing the solver are
limited. However, the unsteady flow in the curved open

channel is a suitable test case for the numerical scheme,

as experimental data are provided in the thesis of
Blanckaert [20] at the Laboratoire d’Hydraulique
Environnementale (LRH) of the Swiss Federal Institute
in Lausanne. The channel layout and dimensions are

shown in Fig. 1. The discharge is set to Q = 0.089 [m/s]
with the flat bed, the rough bed height is ks = 0.001 [m].
The flow depth at the outflow (donwstream end of the

flume) is 0.159 [m]. The computational grid is composed
of 50.000 elements and 30.000 nodes and the time step is
set to 0.1 [s]. Figures 2, 3, and 4 show the isocontours of

the experimental measurements and computed solutions

Fig. 3. Isocontours of the transversal velocity component Vn of cross-stream at the section 	 = 90: (a) measured; (b) nonhydrostatic

solution.
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of the transverse velocity component in cross-sections at
the selected sections, respectively. From data analysis,
the role of the advection momentum transport by the
cross-stream circulation on the distribution of down-

stream velocity and bottom shear stress is more
important [20]. The water elevation at the outer bank is
normally higher than that at the inner bank. The balance

of the non-uniform centrifugal force and the non-uni-
form inward pressure gradient pushes the upper part of
the flow towards the outer bank and the lower part of

the flow towards the inner bank. This flow is

superimposed on the main flow and results in helical
flow over the entire reach of the curved channel.
Some features and processes underlying the full 3D

flow can also be observed from computation. Using the

Lagrange–Galerkin method for the advection terms and
including the non-hydrostatic pressure in the momen-
tum equations for incorporation in the surface elevation

(for providing the local continuity) leads to the accu-
rately dynamical description of the cross-stream
circulation effects of the fluid flow. The incorporation of

the free-surface movement instead of the rigid-lid

Fig. 4. Isocontours of the transversal velocity component Vn of cross-stream at the section p25: (a) measured; (b) nonhydrostatic

solution.
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approximation, the use of non-hydrostatic pressure and
the modified eddy viscosity accounts for a wave-like

oscillation of the pattern of circulation cells embedded in
background anisotropic turbulence.

In the inward straight part of the channel (see Fig. 2),

only one major secondary flow eddy is observed (prob-
ably due to the fact that, in this region, such a
mechanism relies strongly on the anisotropy of turbu-

lence). In the curved part, the outer bank cells rely on
both turbulence anisotropy and the critical value of the
curvature. In fact, besides the classical helical motion, a
weaker and smaller outer bank is well observed near the

outer bank in the curvature (see Fig. 3). The outward
region (Fig. 4) is reproduced successfully. The adoption
of the multi-layers in the vertical direction allow a higher

mesh density near the free-surface and the bottom,
leading to an improvement in the solutions.

4. Conclusion

In this work we proposed a semi-implicit non-hydro-

static 3D multi-layer hybrid finite element model
including the robust fractional step for the k – E solver.
The model used the Lagrange–Galerkin approach for
the advection terms and the eddy coefficients, modified

to account for some anisotropic effects appearing in
open curved channels. More insight has been obtained in
the processes underlying the interesting features of the

flow field such as multi-cellular pattern of the secondary
circulation due probably to the curvature influence on
the turbulence.

The model describes accurately the effect of cross-
stream circulation and related secondary effects, by
means of the modified eddy coefficients obtained from

the linear k – E turbulence closure and full 3D finite
elements with non-hydrostatic pressure considerations.

The tests were performed in order to validate the
model against well-known flow cases. Compared to the

experimental measurements, the computed solutions
perform well and reproduce successfully the secondary
circulations.
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