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Abstract

We propose two semi-analytic models for the interaction of N three-dimensional vortex filaments. These models
allow for topology change of the vortices, e.g. reconnection. Both models are stochastic differential equations where the

effect of diffusion is modelled via a Gaussian white noise forcing of the inviscid equations. The vorticity distribution is
the ensemble average of many realizations, each of which contains N vortices. The first model is a straightforward
extension of the semi-inviscid asymptotic approximation of Klein et al. [1] for nearly parallel vortices, while the second

may be used for vortex filaments of arbitrary geometry.
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1. Introduction

There is no simple, numerically efficient and accurate
model of all stages of vortex reconnection. This is
because viscous diffusion is necessary for full vortex

reconnection, and viscosity renders line vortex models,
with their relatively simple Hamiltonian dynamics,
inapplicable. Despite this, many semi-inviscid models

have been developed that include a simple approxima-
tion for core dynamics, e.g. [1–3]. These models fail
once the vortices approach within a core radius, which

leads to the development of a singularity in curvature
(called a hairpin or kink). Various more or less ad hoc
ways of dealing with reconnection have been proposed
[4,5]. These methods use a physically-based algorithm

to give the end result of the reconnection. Obviously,
the intermediate stages of the reconnection are not
resolved.

In this paper we propose two numerically efficient
models for all stages of the interaction of N vortex
filaments, including reconnection. The first model,

described in x2.1, is a simple stochastic extension of the
asymptotic approximation of Klein et al. [1] for nearly
parallel vortices. A more general model, for vortices of

arbitrary geometry, is presented in x2.2. Because they
are not straightforward asymptotic approximations of
the incompressible Navier–Stokes equations, the accu-
racy of these stochastic models will be tested by

comparing them with full direct numerical simulations

(DNS) of vortex interaction and reconnection. We hope
the models presented here will help us better understand

vortex filament interaction, especially at high Reynolds
numbers.

2. Stochastic models for vortex reconnection

2.1. Nearly parallel vortices

The simplest model for the interaction of three-
dimensional vortex filaments was derived by Klein et al.
[1]. They consider the case of nearly parallel vortices
(e.g. nearly aligned with the z-axis), and assume that the

perturbation amplitudes are much smaller than the
perturbation wavelengths, which are also much larger
than the core radius. As usual in such semi-inviscid

theories, they also assume that the separation between
vortices is much larger than the core radius. With these
assumptions the interaction between vortex filaments is

approximated by two-dimensional point vortex interac-
tion in planes perpendicular to the z-axis, while the self-
interaction is given by a geometrically simple form of the

local induction approximation. These equations are
remarkably simple, and are easy to solve numerically to
high precision. The numerical solutions for the interac-
tion of perturbed nearly parallel filaments presented in

[1] show that the equations develop a kink where the
filaments are closest. At this point the theory breaks
down and the solution is singular.

We propose to extend the theory of Klein et al. to*E-mail: kevlahan@mcmaster.ca
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include viscosity by adding Gaussian white noise forcing
to the filament equations. We obtain the following sto-

chastic partial differential equation (SDE):
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where Xj (z, �) = (xj (z, �), yj (z, �)) are the coordinates

of the vortex centrelines, �j are their circulations, J =
0 � 1
1 0

� �
, and bj (z, �) are independent Gaussian ran-

dom variables with mean zero and variance one. Time
has been re-scaled by 4� so �0 = 4��.
Formally, the only change with respect to the model

of Klein et al. is the addition of the Gaussian white noise
forcing. However, the interpretation of the solution is

very different. The filament position Xj(t) is now a ran-
dom variable, and the vorticity distribution is given by
its probability density function (PDF). The position of

the vortex centreline is the mean of Xj(t). We will see
that the SDE model remains non-singular well beyond
the time when the model of Klein et al. fails. This sug-
gests that a model of this type could reproduce some

aspects of vortex reconnection.
When N= 2 we can use the complex notation of [1] to

derive the following equations for the interaction of a

pair of filaments:
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where  j = xj(z, �) + iyj(z, �), bj(z, t) = bj1 + ibj2, we

have set �1 = 1, � = �2/�1.
Finally, in the case of two dimensions the linear self-

induction term is zero, and we obtain the following

simple equations for the interaction of a pair of two-
dimensional vortices:
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The special case of two dimensions and two identical

vortices (N = 2, � = 1) was proposed as a model for
vortex merger by Agullo and Verga [6]. Note that
because the curvature term vanishes in two dimensions

there is no self-interaction in this case.
In each case the initial condition is singular: a vortex

line in three dimensions, or a point vortex in two

dimensions. We can construct a non-singular initial

condition by simply setting to zero all terms except the
stochastic term until the core has the desired thickness.

Because it does not include any self-interaction, the
dynamics of the two-dimensional SDE model are both
qualitatively and quantitatively incorrect (compare Fig.

1(a)and1(b)). Nevertheless, the model does eventually
produce a single Gaussian vortex. A simple correction
which includes self-interaction by using Gaussian vor-
tices at the non-SDE point vortex positions to advect the

point vortices in the SDE model gives qualitatively
correct results (see Fig. 1(c)).
The three-dimensional model (2–3) appears to per-

form better, probably because some self-interaction is
included via the curvature term (i.e. the local induction
approximation). Until the singular time �* � 0.52 the

SDE model closely matches the semi-inviscid model,
except in regions where the vortices are close. For � >
�* the SDE model continues to be well-behaved,

although the solution eventually becomes inaccurate. A
comparison of the direct numerical simulation solution
of Marshall et al. [7] with the SDE model suggests that
in fact the main source of error is the assumption of

nearly parallel vortices, which is not justified during the
reconnection.

2.2. General SDE model

We now generalize the model for the viscous inter-

action of nearly parallel vortex filaments presented in

Fig. 1. Two-dimensional vortex merger, time increases from

top to bottom. (a) Exact solution. (b) SDE model. (c) SDE

model corrected to include self-interaction.
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the previous section. In order to treat the interaction of
vortices which are not nearly parallel, we use the full
Biot–Savart integral for a line vortex to calculate the

effect of other vortices on the given filament, and include
self-interaction via the general local induction approx-
imation. With these modifications the deformation of
the vortices is not limited, although vortex length is

approximately conserved in any realization. The sto-
chastic term must also be modified. We include diffusion
only in the radial direction, and thus the Gaussian noise

forcing is applied in the plane normal to the local tan-
gent vector of the vortex. The geometry for this model is
shown in Fig. 2.

With these assumption the general SDE model for the
interaction of N vortices becomes
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where � is the curvature and b1 and b2 are independent
Gaussian random variables (generated separately for

each position s and time �).
We will present detailed comparisons of vortex

reconnection calculated using this model with full DNS

and the nearly parallel vortex SDE model presented
above.
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Fig. 2. Filament geometry. becomes
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