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Abstract

For geophysical simulations in the spherical geometry, a family of overset grids named Yin–Yang is proposed. The
Yin–Yang grid is based on the dissection of a spherical surface into two identical (exactly the same shape and size)
subregions. Each subregion of a sphere is patched by the low-latitude part of the usual latitude–longitude grid. The two

identical component grids are combined in a complemental way to cover a spherical surface with partial overlap on
their borders. High performance of the Yin–Yang grid on a massively parallel computer is demonstrated by an
application to geodynamo simulation.
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1. Introduction

The spherical shell is a key geometry in computational
geophysics. Simulations of geodynamo, mantle convec-
tion, and global circulation of the atmosphere are all
performed in the spherical shell geometry. The latitude–

longitude grid, which is defined in the spherical polar
coordinates with radius r (ri � r � ro), colatitude 	 (0 � 	
� �), and longitude � (�� � � � �), would be a natural

choice for the computational grid, since its orthogon-
ality is desirable from numerical reasons; see Fig. 1.

There are two kinds of numerical problems in the

latitude–longitude grid. One is the coordinate singularity
on the poles (	 = 0, and �) and the other is the grid
convergence near the poles that imposes severe restric-
tion on the Courant-Friedrichs-Lewy (CFL) condition

there. The first problem (coordinate singularity) can be
overcome by applying L’Hospital’s theorem. The second
problem (grid convergence) can be overcome by apply-

ing a low-pass filter that effectively generates quasi-
uniform grid spacings over a sphere. We were using a
finite difference method in the latitude–longitude grid

with the L’Hospital’s theorem method and an FFT-
based spherical filter in our previous geodynamo simu-
lations; see, for example, Kageyama and Sato [1] and Li

et al. [2].
We were always troubled with numerical costs and

inefficiency caused by the spherical filter in our geody-
namo simulations. The spherical filter spoils the locality

of our finite difference scheme, which is a strong point
on massively parallel computers in contrast to the
spectral method. We have noticed that the latitude–
longitude grid should be laid aside at least in its original

form.

2. Yin–Yang grid

Reviewing the latitude–longitude grid, one would
notice that both drawbacks of the grid, i.e., the coordi-
nate singularity and the grid convergence, originate
from high latitude regions. The low latitude region near

the equator, on the other hand, has rather desirable
features for a base grid in the spherical geometry; it is
orthogonal and its grid spacings are quasi-uniform. The

low latitude part of the latitude–longitude grid – within
908 (between 458N and 458S) around the equator – is
almost an ideal grid for the spherical geometry; see

Fig. 1.
Suppose a sphere with unit radius (r = 1). An inter-

esting observation on the low latitude, barrel-like part of

the latitude–longitude grid (908 around the equator) is
that if one cuts off 1/4 of the longitude, the remaining
part of the ‘barrel’, has an area of
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which is roughly a half of the full spherical surface area,
4�.
This observation leads us to decomposition of the

spherical surface into two identical parts. A pair of two
identical grids, each of which is nothing but the low-
latitude, 3/4 part of the ‘barrel’ of the latitude-longitude

grid, are combined to cover the spherical surface; see
Fig. 2.
Generally, dissection of a computational domain

generates internal borders between the subregions. In
the overset grid approach, see Chesshire et al. [3], the
subdomains are permitted to partially overlap one

another on their borders. The overset grid is also called
an overlaid grid, or composite overlapping grid, or
Chimera grid as proposed by Steger et al. [4]. Inter-
polations are applied on the boundary of each

component grid to set the boundary values as internal
boundary conditions.
We have proposed, in Kageyama et al. [5], a family of

spherical overset grids and named them ‘Yin–Yang
grids’. A Yin–Yang grid is composed of two identical

component grids that are combined in a complemental

way to cover a spherical surface with partial overlap on
their borders. An example of the Yin–Yang grid is
shown in Fig. 3, whose component grids are in Fig. 2.
The partially overlapped border between the two

component grids – they are called the Yin grid and the
Yang grid – reminds us of a baseball; see Fig. 4(a). When
one cuts along the seam of the baseball, the two pieces of

material that are shown in Fig. 4(b) are obtained. Note
that the pieces are identical in shape and size. The
complemental combination of the two pieces in the

baseball can be regarded as a three-dimensional varia-
tion of the Chinese philosophical symbol (yin-yang) of
complementarity that is shown in Fig. 4(c).
There are many variations of the Yin–Yang grids

since there are infinite patterns of dissection that cut a

Fig. 1. Latitude–longitude grid. The low-latitude part has

favorable features as a base grid system for numerical simula-

tions in the spherical geometry: it is an orthogonal grid with

quasi-uniform spacings.

Fig. 2. A pair of component grids. A component grid is a low-

latitude part of the latitude–longitude grid, defined by 908
around the equator in latitude and 2708 in longitude. The two

component grids are identical and they are combined in a

complemental way to cover a spherical surface.

Fig. 3. A Yin–Yang grid. The two component grids – Yin grid

and Yang grid – shown in Fig. 2 are combined to cover the

spherical surface with partial overlap.
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spherical surface into two identical parts. From a
numerical point of view, the most basic type among
them is that shown in Fig. 3 since its component grids
are rectangles in the computational space (see Fig. 2).

Another example of the Yin–Yang grid is shown in
Fig. 5. In this case, the overlapped area between the two
component grids is minimized. Note that the two com-

ponent grids are identical in this Yin–Yang grid, too.
Since the Yin-subregion and the Yang-subregion are

identical in shape, geometry, grid, and metric tensors, all

subroutines designed for, say, the Yin grid, can be used
for the Yang grid with no modification. This fact makes
the Yin–Yang-based computer code very concise and
efficient. Another advantage of the Yin–Yang grid

resides in the fact that the component grid (Yin or Yang)
is nothing but a (part of the) latitude–longitude grid. We
can directly deal with the equations to be solved with the

vector form in the usual spherical polar coordinates. The
analytical forms of metric tensors such as for Laplacian
in spherical coordinates are well known. Since we can

directly code the basic equations as they are formulated
in spherical coordinates, we can make use of various
resources of mathematical formulas, program libraries,

and tools that have been developed in spherical polar
coordinates.

For three-dimensional spherical shell geometry, the
Yin–Yang grid for a spherical surface are piled up in the

radial direction.

3. Application of the Yin–Yang grid to geodynamo

simulation

We have applied the Yin–Yang grid to a geodynamo

simulation in which the time development of the mag-

netohydrodynamic (MHD) equations is followed in the
spherical shell geometry by a finite difference method
with the basic type Yin–Yang grid shown in Fig. 3. The

physical model is not changed from our previous one.
See, for example, Li et al. [2] for details.
We consider a spherical shell vessel bounded by two

concentric spheres. The inner sphere of radius r = ri
denotes the inner core and the outer sphere of r = ro
denotes the core-mantle boundary. An electrically con-
ducting fluid is confined in this shell region. Both the

inner and outer spherical boundaries rotate with a
constant angular velocity �. We use a rotating frame of
reference with the same angular velocity. There is a

central gravity force in the direction of the center of the

Fig. 4.(a) A baseball. It has a closed seam. (b) Two identical parts obtained by cutting along the seam of the ball. They are combined in

a complemental way to cover the spherical surface. (c) Chinese yin-yang symbol of complementarity. The baseball could be regarded as

its three-dimensional extension.

Fig. 5. Another form of Yin–Yang grid. The overlapped area

between two identical component grids is minimized in this

case.

A. Kageyama /Third MIT Conference on Computational Fluid and Solid Mechanics690



spheres. The temperatures of both the inner and outer
spheres are fixed: hot (inner) and cold (outer). When the

temperature difference is sufficiently large, a convection
motion starts when a random temperature perturbation
is imposed at the beginning of the calculation. At the

same time an infinitesimally small, random ‘seed’ of the
magnetic field is given.
The spatial derivatives of the compressible MHD

equations with uniform viscosity, thermal conductivity,
and resistivity are discretized by the second-order central
finite difference in spherical coordinates: (r, 	, �). The
fourth-order Runge-Kutta method is used for the tem-

poral integration.
We have developed a new geodynamo simulation

code by converting our previous geodynamo code,

which was based on the traditional latitude–longitude
grid. We found that the code conversion from our pre-
vious latitude–longitude-based code into the new Yin–

Yang-based code is straightforward and rather easy.
This is because most of the Yin–Yang code shares
source lines with the latitude–longitude code. Our pre-

vious geodynamo code was basically a finite-difference
MHD solver on spherical coordinates with a full span of
colatitude (0 � 	 � �) and longitude (�� < � � �); on
the other hand, the Yin–Yang grid code is also a finite-

difference MHD solver on the spherical coordinates, but
with just the smaller span of colatitude (�/4 � 	 � 3�/4)
and longitude (�3�/4 � � � 3�/4). The major difference

is the new boundary condition (interpolation) for the
communication between the Yin grid and the Yang grid.
Since the Yin grid and the Yang grid are identical,

dividing the whole computational domain into the Yin
part and the Yang part is natural for parallel processing.
Further domain decomposition within each part is
applied in both the latitudinal and longitudinal direc-

tions. We apply vectorization in the radial dimension of
the three-dimensional arrays for physical variables.
The best performance achieved so far by our Yin–

Yang dynamo code is 15.2 Tflops with 4096 processors
of the Earth Simulator. This is 46% of the theoretical
peak performance. The total grid size of 511 (radial) �
514 (latitudinal) � 1538 (longitudinal) � 2 (Yin and
Yang). The average vector length is 251.6, and the vec-
tor operation ratio is 99%. Such a high performance of

the code demonstrates an excellent potential of the Yin–
Yang grid for simulations in the spherical shell geo-
metry. Details of the performance of the Yin–Yang
dynamo code are reported in Kageyama et at. [6].

4. Summary

For geophysical simulations, grid design in the sphe-
rical shell geometry plays a key role. We have proposed

a new spherical overset grid named the Yin–Yang grid.

The Yin–Yang grid is composed of two component grids
that have the same shape and size. They are combined in

a complemental way to cover a spherical surface with
partical overlap on their borders. Each component grid
is a low-latitude part of the usual latitude–longitude

grid. The grid spacing over the spherical surface is quasi-
uniform.
We have applied the Yin–Yang grid to geodynamo

simulation with good performance (15.2 Tflops, 46% of
peak performance) on the Earth Simulator. The Yin–
Yang grid was also applied to a mantle convection
simulation in a spherical shell geometry; see Yoshida et

al. [7]. The Yin–Yang grid has also been applied to
simulations of the global circulation of the atmosphere,
ocean, and their coupled system; see Takahashi et al. [8],

Komine et al. [9], Ohdaira et al. [10], and Hirai et al.
[11].
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