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Abstract

We present a numerical approach to three-dimensional reconstruction of the evolution of thermal diapiric structures
(e.g. hot plumes in the Earth’s mantle) backwards in time. This approach is based on a search for the temperature and
flow in the geological past by minimizing differences between the present-day temperature and that predicted by

forward models of the evolution of diapiric structures for an initial temperature guess. We use the Eulerian spline FEM,
FDM, and variational method to solve the coupled heat, momentum, and continuity equations with the appropriate
boundary and initial conditions. The relevant numerical algorithm is tested with respect to the Rayleigh number and

viscosity.
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1. Introduction

The idea of combining current and past mantle tem-
peratures and flow data in an explicit dynamical model

is based on the variational method and on solving of the
coupled heat, momentum, and continuity equations in
order to find the model representation that is most
consistent with the observations [1,2,3,4]. That best

estimate can then be used to analyze geodynamic pro-
cesses or initialize a convective model setup more
accurately.

Here we present the numerical approach to a recon-
struction of thermal structures of the Earth, present a
model example, and discuss the effects of the Rayleigh

number (diffusion) on the efficiency of the reconstruc-
tion algorithm.

2. Mathematical statement of the problems

In 3D model domain, where � = [0, x1 = 3h] � [0,
x2 = 3h] � [0, x3 = h], where x=(x1, x2, x3) are the

Cartesian coordinates, we consider a viscous convective
flow of incompressible fluid (heated from below) at the
infinite Prandtl number with a temperature-dependent
viscosity. The flow is described by heat, momentum, and

continuity equations. In the Boussinesq approximation
these dimensionless equations take the form:

@T=@tþ u � rT�r2T ¼ 0, t 2 ð0,#�, x 2 � ð1Þ
rP ¼ divð�EÞ þ RaTe3, E ¼ f@ui=@xj þ @uj=@xig,
e3 ¼ ð0,0,1Þ ð2Þ

div u ¼ 0, t 2 ½0,#�, x 2 � ð3Þ

where T, t, u=(u1, u2, u3), P, and � are temperature,
time, velocity, pressure, and viscosity, respectively, and
Ra is the Rayleigh number.

At the boundary of the model domain we set the
impenetrability condition with perfect slip conditions.
We assume the heat flux through the vertical boundaries
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of the box to be zero. The upper and lower boundaries
are isothermal surfaces. To solve the direct (forward in

time) and inverse (backward in time) problems of ther-
mal convection, we assume the temperature to be known
at the initial time t = 0 and at the final time t = #,
respectively.

3. Variational method and numerical approach

We consider the following objective functional

Jð’Þ ¼ Tð#, � ;’Þ � �ð�Þk k2, where T(#,�;’) is the solu-
tion of the thermal boundary problem (1) at the final
time #, which corresponds to some (unknown as yet)

initial temperature distribution ’(x); �(x) = T(#, x; T0)
is the known temperature distribution at the final time,
which corresponds to the initial temperature T0 = T0(�);
and �k k is the norm in space L2(�). The functional has

its unique global minimum at value ’ � T0 and
JðT0Þ � 0, rJðT0Þ � 0. Therefore, we seek the global
minimum of the functional with respect to ’. To find a

minimum of the functional we employ the following
gradient method (k= 0,. . ., n,. . .):

’kþ1 ¼ ’k � �krJð’kÞ,
�k ¼ minf1=ðkþ 1Þ,Jð’kÞ= rJð’kÞk kg, ’0 ¼ T� ð4Þ

where T* is an initial temperature guess. We found HJ as
a solution to the boundary value problem adjoint to Eq.
(1):

@Z=@tþ 0:5ðu � rZþr � ðZuÞÞ þ r2Z ¼ 0,

t 2 ½0,#Þ, x 2 �, ð5Þ
Zð#,xÞ ¼ 2ðTð#,x;’Þ � �ðxÞÞ, x 2 �,

supplied with uniform boundary conditions. The itera-
tive solution algorithm for the backward heat equation

is based on the following three steps: (i) to solve the heat
equation (1) with appropriate boundary conditions and
initial condition T(0, x) = ’k (x) at time interval [0, #] in
order to find T(#, x; ’k); (ii) to solve problem (5)
backwards in time and to determine HJ(’k); and (iii) to
determine �k and then to update the previous tempera-

ture, i.e. to find ’k+1 from Eq. (4). Computations are
terminated, when �’n ¼ Jð’nÞ þ rJð’nÞk k2< ", and ’n

is then considered to be an approximate solution to the

backward heat equation.
Temperature entering in the heat equation (1) is

approximated by finite differences and found by the
alternating direction method. A numerical solution to

the momentum equation (2) is based on an introduction
of a two-component vector velocity potential and on the
application of the Eulerian FEM with a tricubic-spline

basis for computing the potential. For more detail of the

variational method and numerical approach used, see
[2,3,4,5].

At each subinterval of time [tn+1, tn] (0 <. . .< tn+1<
tn<. . .< t0=#), the solution of the problem (1)–(3) with
the appropriate boundary and initial conditions back-

wards in time consists of the following steps.
Step 1. Given the temperature T = T(tn,�) at t = tn

Eqs. (2) and (3) are solved to determine the velocity u.

Step 2. The ‘advective’ temperature Tadv ¼ Tadvðtnþ1,�Þ
is determined by solving the advection heat equation
(neglecting the diffusion term) backwards in time, and
Steps 1 and 2 are then repeated to find the velocity,

uadv ¼ uðtnþ1, � ;TadvÞ, corresponding to the ‘advective’
temperature.
Step 3. The velocities uadv and u are used in Eqs. (1)

and (5), respectively, to find temperature T = T(tn+1,�)
at t = tm+1.
Step 2 is used to accelerate the convergence of �’n to a

prescribed value of " at a strong flow (high Rayleigh
numbers). When the flow is weak, Step 2 is omitted and
uadv is replaced by u. After these algorithmic steps, we

obtain temperature T = T(tm,�) and velocity u = u(tm,�)
corresponding to t= tn.

4. Model example and performance of the algorithm

We model the evolution of mantle plumes deprived of

source material through numerical experiments of 3D
thermal convection in a bottom heated box. Plume
deprivation is simulated by imposing sudden reductions

in Ra. At the initial time we assume a linear temperature
stratification in the model. The mantle behaves as a
Newtonian fluid at geological time scales, and a tem-

perature-dependent viscosity law given by �= exp(Q/(T
+ G) � Q/(0.5 + G)) is used in the modeling, where
Q = [225/ln(r)] � 0.25 ln(r), G =15/ln(r) � 0.5, and r is
the viscosity ratio between the upper and lower bound-

aries of the model domain. We run the model for two
values of r = 20 and r = 200. This domain is divided
into 37� 37� 29 rectangular finite elements to approx-

imate the vector velocity potential by tricubic splines,
and a uniform grid 112� 112� 88 is employed for
approximation of temperature, velocity, and viscosity.

We assume that mantle plumes are generated at the
base of the upper mantle boundary by a random tem-
perature perturbation on this boundary. The plumes

move upward through the model domain, gradually
forming structures with well-developed heads and tails.
We interrupt the numerical experiment at a certain time
when the hot material in the source layer is nearly

depleted and the plume heads are mushroom shaped,
and decrease the Rayleigh number. We then continue
three independent experiments assigning various Ra less

than the initial Ra by one to three orders of magnitude.
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Here we present the case of Ra = 9.5� 103. Figure 1
(left panel) shows several stages in the diffusive decay of
the mantle plumes. The thermal plumes diminish in size

with time and the plume tails disappear before the plume
heads.
We apply the numerical approach to reconstruct the

plumes from their ‘present’ weak state to the prominent
state they were in the past. Figure 1 illustrates the
reconstructed states of the plumes (middle panel) and
the temperature residuals �T (right panel) between the

temperature predicted by the forward model and the
temperature reconstructed to the same age.
The performance of the algorithm is evaluated in

terms of the number of iterations n required to achieve �,
the prescribed relative reduction of �’n. Figure 2 shows
that the smaller is the Rayleigh number (the higher

diffusion), the larger number of iterations is required to
achieve �. This figure illustrates that the first 4 to 6
iterations contribute mainly to the reduction of �’n.

5. Conclusion

A mathematical model of the thermal plume evolution
in the Earth’s mantle is described by a set of equations,

and we have demonstrated that the set of equations can
be solved numerically backwards in time. Our restora-
tion methodology works well for the mathematical

model, and we have shown its efficiency in the frame-
work of this model. We have illustrated that a weak
(diffused) present-day thermal feature in the mantle can

Fig. 1. Reconstruction of thermal plumes in the Earth’s upper mantle. The plumes are represented by the isothermal surface at

T=0.92.
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be traced back into the geological past and the structure
prominent in this past can be restored.
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Fig. 2. Relative reductions of the objective functional J (left panel) and the norm of the gradient of J (right panel) as functions of the

number of iterations. Curves: r=20 and Ra=9.5� 105 (1), Ra=9.5� 103 (2), Ra=9.5� 102 (3); r=200 and Ra=9.5� 103 (4);

Ra=9.5� 102 (5).
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