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Abstract

Starting with the effect of forced flows on the morphologies of growing dendrites, previous work on simulating

dendritic growth with convection is summarized. In our work a fixed mesh for the temperature and a conformable mesh
for velocity and concentration in a binary alloy are used; this method captures the morphology and motion of the
complex solid-liquid interface. Convection is driven by thermo-solutal buoyancy and solidification contraction.

Examples include: the natural convection near a dendrite of a pure substance growing in its under-cooled liquid; the
dendritic growths of a pure substance and an alloy in their undercooled liquids, in which the convection is driven by
buoyancy and solidification contraction; and the effects of convection driven by thermosolutal buoyancy and solidi-

fication contraction during the directional solidification of an alloy. Solidification contraction dominates the convection
pattern, when the concentration of the alloy-element is dilute.
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1. Introduction

Numerical modeling of dendritic growth without
convection has been studied for two decades, using the

phase-field method, the level-set method and explicit
interface-tracking methods. The extension of these
methods to include convection, however, is more recent.

For pure substances, Tönhardt et al. [1] used a phase-
field to simulate dendritic growth with forced flow and
saw that growth of the side-branches was promoted on

the upstream side. Tong et al. [2] also simulated the
effects of forced flow on dendrite-growth using phase-
field methods. Al-Rawahi et al. [3] and Udaykumar et al.

[4] did simulations involving forced flow using front-
tracking. Three-dimensional simulations of equiaxed
dendrites of pure substances in forced convection were
reported by Jeong et al. [5] and Boettinger et al. [6].

Simulations of dendritic growth with natural convec-
tion are few. Bänsch et al. [7] used a sharp interface for
thermal convection around equiaxed dendrites. Tön-

hardt et al. [8] used a phase-field method. For small
under-coolings, convection has a profound effect on

dendrites; for larger under-coolings, the influence of
thermal convection is small.
Simulation of non-dilute alloys is challenging even

with no convection because of widely different length

and time scales in the energy and mass transport and the
partitioning of solute between phases with a strong
dependence of the liquidus temperature on concentra-

tion [9]. Convection further confounds the problem. To
deal with flow and moving boundaries various meshes
have been used: fixed Cartesian-meshes and adaptive

ones. The former include diffuse-interface methods,
where the moving interface has a finite thickness of a few
grid spacings [2,3,10], and the sharp interface methods,

where interface conditions (thermodynamic and kinetic
constraints) are applied directly [11]. Adaptive meshes
may or may not conform to the moving interface. These
comprise: (1) conformal mapping for simple geometries

[12]; (2) node/mesh-moving methods that preserve the
mesh structure [13]; and (3) re-meshing as the interface
moves [14]. Others have used adaptive meshes that are

locally refined and regenerated [5,8] or a coarse mesh,
which is refined in the regions of steep gradients [15].
With finite-differences, a Cartesian-mesh has draw-

backs: it is difficult to locally refine the grid, unless a fine
grid is used throughout; and applying interface-condi-
tions is difficult. In the generalized immersed boundary
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method [10], the forcing term is iteratively calculated
and interpolated to the nodes until the velocity agrees

with the interface velocity. Finite volumes with sharp
interface were used by Udaykumar et al. [11], but the
method can produce inaccuracies [16]. An adaptive-

conformal mesh can be refined near the interface, and
interface-conditions can be applied precisely. The trade-
off is the need to regenerate the mesh every time-step

and to interpolate to the new mesh.

2. Meshing for the finite-element method

We use a sharp-interface, finite-element model to
simulate dendritic solidification of binary alloys with

convection. The model was applied to dendritic growth
of alloys without convection in Zhao et al. [14]. An
adaptive mesh (very fine at the interface) is used to solve

the concentration and momentum equations. The solid-
liquid interface is explicitly tracked, and the interfacial
conditions are applied directly [17]. The energy equation

is solved on a fixed mesh of bilinear/triangular elements.
The method requires very efficient re-meshing and
interpolation between two different meshes [14,18,19].
Convection, including that driven by contraction and

both thermal and solutal buoyancy, has been modeled.
We validated simulations for classical scenarios: for

flow past a stationary cylinder for Reynolds numbers up

to 100 we achieved excellent agreement with Fornberg
[20]; for flow induced by an oscillating circular cylinder
we produced results that compared almost exactly with

the experimental data of Dütsch et al. [21]; and for the
Benard instability we reproduced, almost exactly, the
critical Rayleigh number and obtained excellent agree-

ment with experiments [22]. Dendritic-growth with
thermal convection was validated using the work of
Tönhardt et al. [8].
Details regarding the tracking scheme and interaction

between the moving interface, without convection, and
the fixed mesh are in [9,14,17]. For dendritic growth into
an undercooled pure melt, the model was tested against

solvability theory in predicting the tip growth velocity.
The model also predicts the outcomes of the linear sta-
bility theory of plane-front solidifcation. Buoyed by all

these calculations, the present model is deemed appro-
priate for simulating dendritic solidification with
convection.

3. Simulations of dendritic growth with convection

Figure 1 is an example of thermal convection near a
dendrite that is growing in an under-cooled liquid.
Thermal buoyancy, caused by latent heat release, forms

two vortices above the crystal, which leads to the

corresponding isotherms. Figures 2(a) and 2(b) compare
the equiaxial dendrites of a pure substance and coun-

terpart alloy when there is no convection. With
convection caused by solidification contraction, growth
of the side branches is more pronounced (Figs. 2(c) and

2(d)). Figure 3 shows directional solidification of a dilute
alloy with thermo-solutal convection. The solidification
contraction drastically changes the convection from re-
circulating cells (Fig. 3(a)) to flow downwards (Fig.

3(b)).

4. Conclusions

To capture the morphology of growing dendrites
using finite element methods, a conformable mesh for
velocity and concentration and a fixed mesh for tem-

perature have been used. The technique is robust enough
to reproduce convection and solidification in many dif-
ferent cases of known results and to study coupling of
natural convection and dendritic growths of pure sub-

stances or alloys growing in their under-cooled liquids or
under directional solidification conditions. The convec-
tion can be driven by thermosolutal-buoyancy and

solidification contraction. The contraction dominates
the convection pattern when the concentration of the
alloy element is dilute.

Fig. 1. Isotherms around a growing dendrite of succinonitrile

showing the effects of natural convection: (a) full computational

domain; (b) same as (a) but enlarged and near the dendrite.
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