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Abstract

Since the symmetries of fluid motion (scaling of time, scaling of space, translation in time, translation in space,
Galilean invariance etc.) are admitted by all statistical quantities of turbulent flows as can be taken from the multi-point

equations [1], we can derive conditions for turbulence models so that they capture the proper flow physics. Concerning
these constraints we will investigate two-equation models as well as Reynolds stress transport models for their cap-
ability to reproduce the new exponential velocity law first derived in Oberlack [1].
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1. Introduction

In RANS modeling it is common practice to use
classical canonical flow cases such as the isotropic decay,
the logarithmic law of the wall or homogeneous shear

flows for calibrating the model constants. With the help
of Lie group analysis a broad variety of invariant solu-
tions (scaling laws) can be derived comprising the

classical solutions of the latter (the isotropic decay,
logarithmic law of the wall, homogeneous shear flow) as
well as a broad variety of new solutions that have so far

not been used for model calibration or development.
The symmetry methods provide therefore a very useful
tool for the improvement of existing turbulence models
or may be a guideline for the development of new

models.

2. Required symmetry conditions for turbulence models

The most important necessary conditions for Rey-
nolds-averaged turbulence models may be summarized
as follows:
(i) All symmetries of the two- and multi-point correla-

tion equations have to be admitted by the model
equations (necessary but not sufficient condition!).

(ii) There should also be no additional unphysical

symmetries in the model equations for reduced cases
such as those admitting rotational symmetry.

(iii)The symmetry conditions (i) and (ii) have to be
admitted from each single model equation and
independent of the momentum and continuity

equations.
(iv)All invariant solutions implied by the two- and

multi-point correlation equations also have to be

admitted by the model equations.
Condition (ii) emerged from symmetry analyses of the
�–� model in plane and axisymmetric parallel shear

flows with rotation. From these test cases we found that
the �–� model has too many symmetries that are not
contained in the two- and multi-point equations, leading
to non-physical behavior under certain flow conditions,

such as rotation or stream line curvature. This is due to
the fact that the �–� model does not contain Coriolis
terms for any type of flow so that no symmetry breaking

of scaling of time is allowed. A complete group analysis
of the �–� equations in cylinder coordinates discloses an
additional symmetry of the form:

r� ¼ r, �u�z ¼ �uz, �u�� ¼ �u� þ br, �� ¼ � ð1Þ

where b represents the group parameter. This additional
symmetry allows the addition of solid body rotation to

the azimuthal velocity without any change to the
remaining flow quantities. Obviously this is unphysical
since turbulence is highly sensitive to rotation.

Khor’kova et al. [2] found from a symmetry analysis
of the �–� model that condition (i) is usually fulfilled by
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the model equations. Though the �–� model apparently
admits all necessary symmetries, we find that it is still

not capable of reproducing all invariant solutions that
are derived from the symmetries (condition (iv)). A first
hint towards this problem is given in [3] and [4] inves-

tigating shear-free turbulent diffusion. This clear
contradiction may be illuminated by the example of the
exponential velocity law for the zero-pressure gradient

(ZPG) turbulent boundary layer flow (see Section 3).

3. Consistency of RANS models concerning the modelling

of the exponential velocity defect region

3.1. Symmetry analysis

Analyzing the multi-point-correlation equations for
parallel turbulent shear flows, and ZPG turbulent
boundary layer flows, a new exponential law has been

found, which was identified as an explicit analytic form
of the velocity defect law. Scaling the wall-normal
coordinate in the outer region with the Clauser-Rotta

length scale (� = ���u1
u�

, where �� is the displacement
thickness) and applying the free-stream boundary con-
dition, the exponential law can be written in general
form as

�u1 � �u1
ur

¼ Fð�Þ ¼ � expð���Þ ð2Þ

where � and � are universal constants and � = y/�. In
Oberlack [1] the exponential law (2) was solely derived
from the Lie symmetries of the Navier-Stokes equation

and in turn from the multi-point correlation equations,
introducing the assumption of symmetry breaking of the
scaling of space.

3.2. Results from experiments and numerical simulations

Recently the theory has been carefully tested against

very high quality experimental data from the KTH
database [5] and the Illinois windtunnel [6]. It can be
shown that the exponential law fits the experimental
data very well in the range of about 0.025 � y/� � 0.11,

as can be seen from Fig. 1. The constants are determined
as � = 10.5 and � = 9.5.
Figure 2 shows the results of a direct numerical

simulation (DNS) of a ZPG boundary layer performed
for R	 = 2240 [7]. The DNS results show an exponential
law in the region 0.025 � y/� � 0.15.

3.3. Model implications

Since a very good agreement between theory, experi-

ments and numerical simulations is observed it should

also be demanded from the RANS models to be in
accordance with the theory. Thus a further symmetry

analysis of the �–� model for ZPG boundary layer flows
has been performed. Imposing here as well the symmetry
breaking of the scaling of space we obtain besides Eq. (2)

the following set of invariant solutions:

k ¼ C expð�2��Þ, � ¼ D expð�3��Þ ð3Þ

The model equations thus formally admit all symmetries
of the correlation equations (condition (i)). Therefore, it

remains to check if they also admit the invariant solu-
tions (condition (iv)). The models that have been tested
concerning this requirement are the one-equation model

from Spalart et al. [8], the classical �–� model from
Hanjali�c et al. [9], the �–! model from Wilcox [10], the

Fig. 2. Mean velocity profiles from DNS with Re	 = 2240, [5];

- - - exponential law.

Fig. 1. Mean velocity profiles from experiments at different

Reynolds numbers: Re	 = 22579, 23309, 23870, 25767, 26612,

27320, performed at KTH (Stockholm) [7]; - - - exponential law.
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2fmodel from Durbin [11], the SSTmodel fromMenter
[12], the

ffiffiffi
k
p

L model from Menter et al. [13], the �–�L
model from Rotta [14], and, as an example for a Reynold
stress model, the LRR model [15]. Thereby it was found
that all these models are in contradiction to the theory.

In the following examples we will point out the problems
appearing in the �–�, Spalart-Almaras and LRR models.
For our investigations we assumed that all statistical

quantities depend only on the wallnormal coordinate. In
a first analysis the diffusion term has been neglected,
supposing a local equilibrium between production and
dissipation (see Fig. 3). Introducing the invariant solu-

tions (2) and (3) into these simplified model equations,
we receive either conditions for the model constants such
as C�1 = C�2 that are not fulfilled or unphysical coeffi-

cients for the exponential law. Replacing the dependent
variable ~� in the Spalart-Almaras model with the invar-
iant solution ~� = E exp(� �y), we receive the coefficient

E = �Cb1��u��=ð2Cb2�Þ, whereby Cb1, � and Cb2 are
model constants. We can thus derive the condition Cb1�/
Cb2 < 0, under which a proper modeling of the expo-

nential region is assured. Since Cb1, � and Cb2 are
positive, changing the algebraic sign of one of the coef-
ficients would probably lead to a deficient modeling if
other flow cases are considered. For the LRR model,

such a discrepancy appears in the model constants that
all coefficients of the scaling laws become zero if the
invariant solutions are introduced into the model equa-

tions. Performing a second analysis with the diffusion
term included into the model equations did not lead to
any improvements concerning these shortcomings.

The reason for these mismatches seems to be due to
the fact that the given models are all calibrated

employing the classical flow cases. A calibration of the
models using symmetry methods would probably

improve the described shortcomings.

4. Conclusions and outlook

Using the new exponential velocity law it could be

shown that for a proper modeling it is not sufficient that
the model equations admit all symmetries of the two-
and multi-point correlation equations. We derived

therefore as further condition for RANS models that the
scaling laws derived from the symmetries also have to be
reproduced by the models. From the example of the

exponential velocity law we can further propose condi-
tions for the model constants that have to be fulfilled so
that the model equations admit the invariant solutions.
It could thus be shown that a considerable improve-

ment in the field of turbulence modeling can be received
if symmetry methods are used for the calibration or
development of turbulence models.

In the final paper, further investigations concerning
condition (ii) will be included as well. We will thus give a
full analysis of the �–� model in axisymmetric parallel

shear flows with rotation, as well as proposals for an
improvement of classical two-equation models con-
cerning the modeling of this flow case.
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lenter Scherströmungen. Aerodynamische Versuchanstalt

Göttingen 1968; Rep. 69 A14.

[15] Launder BE, Reece GC, Rodi W. Progress in the devel-

opment of a Reynolds-stress turbulence closure. J Fluid

Mech 1975;68:537–566.

[16] Spalart PR. Direct simulations of a boudary layer up to

Re	 = 1410. J Fluid Mech 1988;187:61–98.

S. Guenther, M. Oberlack / Third MIT Conference on Computational Fluid and Solid Mechanics 661


