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Abstract

A general class of scale-separating operators based on combined multigrid operators in a two-grid procedure and

suited for variational multiscale large eddy simulation is proposed in this work. By applying these scale-separating
operators, the complete range of resolved scales is separated into large and small resolved scales. Dynamic as well as
constant-coefficient-based subgrid-scale modeling may be performed within this multiscale environment to account for

still unresolved scales.
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1. Introduction

Large eddy simulation (LES) is widely considered to

be a promising approach for the numerical simulation of
turbulent flows. A basic ingredient of this procedure
consists in the separation of resolved and unresolved
scales. In classical LES, this separation of scales is

mostly achieved by applying a spatial filter. The concept
of the variational multiscale method (see, e.g., Hughes et
al. [1]) consists in differentiating scale groups through

variational projection. In Collis [2] and Gravemeier et al.
[3], the picture of the variational multiscale method has
been broadened by raising the number of separated scale

ranges to three. A three-scale separation may particu-
larly account for large resolved scales, small resolved
scales, and unresolved scales. Apart from replacing a

spatial filter by variational projection, the (direct)
influence of the subgrid-scale model is confined to the
small resolved scales in variational multiscale LES.
Thus, the large resolved scales are solved without any

(direct) influence of the modeling term.
At this stage, it has to be pointed out that the varia-

tional multiscale method is, from a practical standpoint,

‘merely’ a theoretical framework for the separation of
scales. Corresponding practical methods in physical

space fitting in this framework, on the one hand, and
enabling an implementation as a computational algo-
rithm, on the other hand, are still rare. It is important

for such practical methods that a clear separation of the
different scale ranges is actually achieved. The proposed
scale-separating operators of this work have been
implemented into the code CDP-�, the flagship LES

code of the Center for Turbulence Research. Underlying
this code is a finite volume method particularly suited
for applications on unstructured grids. With regard to

such a computational environment, the procedure for
separating the scales is developed. A general class of
scale-separating operators based on combined multigrid

operators in a two-grid procedure is proposed in order
to replace spatial filters or their discrete analogs,
respectively, which are widely used in classical LES. One

particular representative of this class has the important
property of a projector. A projector of this type has also
recently been addressed in Koobus et al. [4] as well as
Vreman [5]. Further analysis of the scale-separating

operators to be presented in this paper comparing them
to discrete smooth filters for unstructured grid applica-
tions as well as the results for the test case of a turbulent

channel flow may be found in Gravemeier [6].
The remainder of this paper is organized as follows. In

Section 2, the variational three-scale formulation under-

lying the variational multiscale LES is described. Section
3 introduces the scale-separating operators. Subgrid-
scale modeling within the multiscale environment is
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briefly addressed in Section 4. Finally, some conclusions
are drawn in Section 5.

2. Variational three-scale formulation

A variational formulation of the incompressible
Navier-Stokes equations reads

BNSðv; q; u; pÞ ¼ ðv; fÞ� 8ðv; qÞ 2 Vup ð1Þ

where Vup denotes the combined form of the weighting
function spaces for velocity u and pressure p in the sense

that Vup:= Vu � Vp. The scales of the problem are now
separated into three scale ranges as proposed in Collis
[2] and Gravemeier et al. [3]. More precisely, it will be

dealt with large resolved scales, small resolved scales,
and unresolved scales in the following. Due to the line-
arity of the weighting functions, the variational equation

(1) may be decomposed into a system of three varia-
tional equations reading

BNSð�v; �q; �uþ u0 þ û; �pþ p0 þ p̂Þ ¼ ð�v; fÞ� 8ð�v; �qÞ 2 Vup
ð2Þ

BNSðv0; q0; �uþ u0 þ û; �pþ p0 þ p̂Þ ¼ ðv0; fÞ� 8ðv0; q0Þ 2 V0up
ð3Þ

BNSðv̂; q̂; �uþ u0 þ û; �pþ p0 þ p̂Þ ¼ ðv̂; fÞ� 8ðv̂; q̂Þ 2 bVup
ð4Þ

Assuming a clear separation of the large-scale space and
the space of unresolved scales and modeling rather than

solving for the effect of the unresolved scales results in a
model term only acting onto the small resolved scales.
The focus is on the subgrid viscosity approach here as a

usual and well-established way of taking into account
the effect of unresolved scales in classical LES. It has to
be emphasized that it is merely accounted for the dis-
sipative effect of the unresolved scales onto the resolved

scales by using this approach. The small-scale equation
(3) then reads

BNSðv0; q0; �uþ u0; �pþ p0Þ � ðv0; �T�u0Þ� ¼ ðv0; fÞ�
8ðv0; q0Þ 2 V0up ð5Þ

The subgrid visosity term directly acts only on the small
resolved scales. The indirect influence on the large

resolved scales, however, is ensured due to the coupling
of the large- and the small-scale equation. Appropriate
modeling approaches for the subgrid viscosity �T will be
addressed in Section 4.

The scale separation to be presented in Section 3 relies
on a level of complete resolution indicated by the
characteristic control volume length h. In terms of the

velocity, this reads

uh ¼ ð �uþ u0Þh ð6Þ

With respect to this complete resolution level, a large-
scale resolution level is identified a priori. This level is
characterized by the control volume length �h and,
accordingly, yields a large-scale velocity �u

�h. The small-

scale velocity is consistently defined as

u0h ¼ uh � �uh ð7Þ

Large- and small-scale weighting functions are intro-

duced accordingly. It is focussed on a finite volume
formulation below, i.e. the subgrid viscosity term is
integrated by parts and formulated on the boundary.

Reunifying the large-scale equation (2) (without the
dependence on the unresolved scales) and the modeled
small-scale equation (5) yields a final equation, which

may be written in compact form with the help of (7) as

BNS vh; qh; uh; ph
	 


� v0h; �Tn � ru0h
	 


�0

¼ BNS vh; qh; uh; ph
	 


� vh; �Tn � r uh � �u
�h

� �� �
�
þ

�v
�h; �Tn � r uh � �uh

	 
� �
��

¼ vh; f
	 


�
8 vh; qh
	 


2 Vhup; �v
�h 2 V

�h

up ð8Þ

where the boundary � is split up into a large-scale
boundary �� and, accordingly, a small-scale boundary

�0= � � ��. A visual impression of these boundaries will
be given at the end of the subsequent section. The
inherent scale separation remains obvious in (8) merely

due to the subgrid viscosity term.

3. Separation of scales

As the basis for the following developments, two grids
are created: a coarser grid, which is called ‘parent’ grid,
and a finer grid, which is named ‘child’ grid. The child
grid is obtained by an isotropic hierarchical subdivision

procedure similar to the one described in Mavriplis [7]
starting from the parent grid.
The general class of scale-separating operators based

on multigrid operators reads

�uh ¼ Sm uh
� �
¼ P � R½uh� ¼ P �u

�h
h i

ð9Þ

where the scale-separating operator Sm is constituted by

the sequential application of a restriction operator R
and a prolongation operator P. Applying the restriction
operator on uh yields a large-scale velocity �uh defined at

the degrees of freedom of the parent grid which is then
prolongated in order to obtain a large-scale velocity �u

�h

defined at the degrees of freedom of the child grid

eventually. Various restriction as well as prolongation
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operators may be thought of being used in (9). However,

the attention is directed to two particular combinations
of restriction and prolongation operators. Both of them
rely on the same restriction operator, but apply different

prolongation operators afterwards. The restriction
operator is defined to be a volume-weighted average
over all child control volumes �i within one parent

control volume subject to

�u
�h
j ¼

Pncop
i¼1

�ij juhi
Pncop
i¼1

�ij j
ð10Þ

where �u
�h
j denotes the large-scale velocity at the center of

the parent control volume ��j and ncop the number of

child control volumes in ��j. The first prolongation
operator Pp yields a constant prolongation, i.e.

�uhi ¼ Pp �u
�h
j

h i
i
¼ �u

�h
j 8�i � ��j ð11Þ

and zero elsewhere. The scale-separating operator
defined as Spm:= Pp � R has the property of a projector

indicated by the additional superscript p. The second
prolongation operator considered in this paper yields a
linear prolongation subject to

�uhi ¼ Ps �uhj

h i
i
¼ �u

�h
j þr

�h �u
�h
j ð�rj � riÞ 8�i � ��j ð12Þ

and zero elsewhere. ri and rj denote the geometrical

vectors pointing to the center of the child control
volume �i and the parent control volume ��j, respec-
tively. H

�h designates the discrete gradient operator on
the parent grid. Due to this, values from neighbouring

parent control volumes and, consequently, child control
volumes belonging to these neighbouring parent control
volumes influence the final large-scale value in the child

control volume �i. Hence, Ps does not provide us with a
projective scale-separating operation as shown in
Gravemeier [6]. It rather produces a form of smoothing

prolongation, which is indicated by the additional

superscript s. The complete scale-separating operator is

defined as Ssm:= Ps � R. Nevertheless, Ssm exhibits a
fundamentally different character compared to, e.g.,
discrete smooth filters. Alternative definitions for the

restriction as well as the prolongation operator are cer-
tainly conceivable.
The validity of (8) with respect to the subgrid viscosity

term in a complete sense remains to be analyzed. In
Gravemeier [6], it was shown that discrete smooth filters
in contrast to the scale-separating operators based on
combined multigrid operators do not satisfy (8) in a

strict sense due to the fact that the third term in line 3 of
(8) cannot be represented. However, there is also a
crucial difference between Spm and Ssm in this context:

there is no large-scale (subgrid) viscous flux across the
small-scale boundary �0 for Spm. As a result, (8) may be
specified for Spm as

BNS vh; qh; uh; ph
	 


� v0h; �Tn � ruh
	 


�0
¼ vh; f
	 


�
ð13Þ

In Fig. 1, the definition of large- and small-scale
boundaries in a finite volume method is visualized for a

2-D case. The large-scale weighting function �v
�h is

exclusively defined on the large-scale boundaries
belonging to the parent control volume as shown in Fig.

1(a). The small-scale weighting function v
0h is exclusively

defined on the inner boundaries of the child control
volumes, confer Fig. 1(b).

4. Subgrid-scale modeling within the multiscale

environment

It is focussed on the specific modification of the

Smagorinsky [8] model restricting the dependence on the
small scales subject to

�T ¼ ðCShÞ2 " u0h
	 
�� �� ¼ ðCShÞ2 " uh � �uh

	 
�� �� ð14Þ

which has been named ‘small-small’ model in Hughes

Fig. 1. Geometrical locations of weighting functions in the FVM for a 2-D case: (a) large-scale; (b) small-scale.
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et al. [1] and appears to be the most natural version
within the multiscale environment.

The dynamic modeling procedure proposed in Ger-
mano et al. [9] enables a computation of the constant CS

as a function of time and position. It is interesting to

note that the dynamic modeling procedure already dis-
tinguishes large resolved scales, small resolved scales,
and unresolved scales explicitly. This amounts to be

exactly the type of scale separation in the variational
three-scale formulation. The dynamic modeling proce-
dure based on the aforementioned scale-separating
operators including alternative formulations is elabo-

rated in Gravemeier [6].

5. Conclusions

A general class of scale-separating operators based on

combined multigrid operators and suited for variational
multiscale LES both with dynamic and constant-coeffi-
cient based subgrid-scale modeling has been proposed.

Only one representative of the class exhibits the impor-
tant property of a projector allowing to fulfill the
theoretical assumption which underlies the scale
separation within the variational multiscale method in a

strict sense. The operators are further analyzed, imple-
mented in a second-order accurate energy-conserving
finite volume method, and tested for the case of a tur-

bulent channel flow in Gravemeier [6].
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