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Abstract

We examine the linear stability to axisymmetric disturbances in weakly rarefied flows (‘slip regime’) on the micro- and

nano-scale. A semi-analytical solution of the Orr-Sommerfeld equation shows that pulsatile flow is linearly stable in the
slip regime although a sudden change in the stability properties of the flow occurs at a critical value of the Knudsen
number Kncr = (2 � �)/8�, where � is the accommodation coefficient. Flow structures corresponding to the largest

energy growth are toroidal vortex tubes that are transported diffusively and convectively by the mean flow. Transient
energy growth is found to decrease at larger Knudsen numbers indicating that the Orr-Sommerfeld operator for slip
flow is less non-normal compared to continuum-based no-slip flows.
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1. Introduction

The study of pulsatile tube flow, first considered in the
context of arterial hemodynamics in the mid-1950s [1],
has found renewed significance in its application to

MEMS microfluidic engineering applications. A feature
common to many of the devices described in the
microfluidics literature that incorporate ‘chip-level’

pumping is that the flow is pulsatile in nature [2,3]. On
the micro- and nano-scale the surface roughness of the
channel walls can have greater impact on the flow

behavior in contrast to their macro-scale counterparts;
this is especially true for the case of rarefied (or ‘slip’)
flows [4]. In addition to the potential generation of flow

disturbances, the surface roughness also influences the
velocity boundary condition for rarefied flows through
tangential momentum accommodation coefficient � [5].

Linear stability analyses of continuum-regime steady

[6] and pulsatile flows [7,8] show that all of the eigen-
modes are damped, although an initial energy growth of
the flow perturbation can occur due to the non-nor-

mality of the Orr-Sommerfeld operator [9,10]. Transient
growth is important if transition to turbulence is

thought as emanating from ‘by-pass transition’

mechanisms [10]. In the following we extend the pre-
vious studies on pulsatile flow stability to the case of
weakly rarefied flows (‘slip regime’) defined by Knudsen
numbers � 0.3.

2. Orr-Sommerfeld equation for a weakly rarefied

pulsatile flow

We consider as an undisturbed state the fully-devel-
oped, pulsatile flow in a pipe of circular cross section of
radius R driven by an imposed periodic pressure gra-

dient @P/@z. The fully-developed streamwise velocity
W(r, t) satisfies the following initial boundary value
problem
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where 	 is the dynamic viscosity, � is the density and ! is

the frequency of the oscillating pressure gradient. For a
weakly rarefied flow (or ‘slip regime’), the velocity
boundary condition is modeled as a first-order slip
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where � is the gas mean free path and � is the tangential
momentum coefficient (TMAC). The first-order slip

condition (2) is valid provided the Knudsen number of
the flow Kn � �/2R � 0.3 [11]. The value of � is
restricted to the range of [0, 1] whose lower and upper

limits correspond to ‘pure-slip’ and ‘no-slip,’ respec-
tively. The precise value of � depends upon the fluid and
the surface properties of the channel walls. Recent

experiments by Arkilic et al. [5] using nitrogen, argon
and carbon-dioxide and polished, single-crystal silicon
walls have suggested a range of � = 0.75 � 0.85.
The analytical solution of Eq. (1) subject to the

boundary condition (2), when properly non-dimension-
alized, is found as

Wðr; tÞ ¼W0 þW1 exp ðit StÞ ð3Þ
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where the velocity scale is based on the steady Poiseuille

flow component (= K0R
2/4�), the length scale is the

tube diameter, and the time scale is the oscillation per-
iod. The quantities Re and St are the Reynolds number
and Strouhal numbers, respectively,

Re ¼ �U R

�
St ¼ 2R!

U
ð6Þ

and are related to the Womersley number, Wo =ffiffiffiffiffiffiffiffiffiffiffi
ReSt
p

. The latter is generally interpreted as the ratio of

oscillatory inertia to viscous forces.
We define a cylindrical coordinate system with z-axis

along the streamwise direction and impose an axisym-

metric velocity perturbation to the basic flow.
Introducing a Stokes stream function of the form �(r, z,
t) =  (r, t)ei�z, with � the streamwise wave number,

radial and streamwise velocity components of the per-
turbation are given by
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and the condition of incompressibility is automatically
satisfied. Substitution of the basic flow (3)–(5) and the
perturbation velocity (7) into the general Navier-Stokes

equations yields, after neglecting nonlinear terms, the

following Orr-Sommerfeld equation for the stream
function  in dimensionless form [8]:

L t �Wi�3 þ i�ð� LWþWL Þ ¼ Re�1L2 ð8Þ

where L is defined by L = @2/@r2 � r�1@/@r � �2. The
boundedness of the flow at the centerline and the slip

condition at the wall of the pipe provide the boundary
conditions:
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3. Galerkin projection method

We solve the Orr-Sommerfeld equation (8) by seeking
an approximation stream function  ̂(r, t) as

 ̂ðr; tÞ ¼
XN
k¼1

akðtÞ�kðrÞ ð11Þ

where fakðtÞgNn¼1 are time-dependent coefficients to be
determined and the basis f�nðrÞg1n¼1 is the set of eigen-

functions of the long-wave limit (� ! 0) of the Orr-
Sommerfeld equation (8). These basic functions satisfy
the eigenvalue problem [8]

~L2�n ¼ �Re�n ~L�n ð12Þ

subject to the boundary conditions (9)–(10). Here, ~L =
r@/@r (r�1@/@r) is a reduced operator and the eigenvalues
are given by �n ¼ �2

n=Re, where �n are the roots of the

eigenvalue relation

J2ð�Þ � 2sKn�J1ð�Þ ¼ 0; s ¼ 2� �
�

ð13Þ

and where J1(r) and J2(r) are the Bessel functions of first
kind of order 1 and 2, respectively. One readily finds the
solution for �n as

�nðrÞ ¼

ffiffiffi
2
p

r r� J1ð�nrÞ
J1ð�nÞ

� �
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2sKn ð4� 2�2

nsKnÞ
p ð14Þ

By means of a Galerkin projection, Eq. (8) yields the

following system of periodic ordinary differential
equations:

M
da

dt
¼ ½KþH exp ðit StÞ� a ð15Þ

Here, a(t) is an (N � 1) column vector whose n-th
component is an (t) and the entries of the (N � N)

constant matrices M, K, H are defined as follows:
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where �jk is the Kronecker delta and f; gh i ¼

R 1
0 fg dr

r . The
energy of the velocity field associated to the approx-
imation stream function  ̂ is expressed as
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(16)

where a* denotes the Hermitian conjugate.

4. Stability and space-time evolution of an optimal

perturbation

The time evolution of a(t), for any t, depends on the
fundamental matrix G(t) that satisfies the system (15)

with initial conditions G(0) = I, where I is the N � N
identity matrix. The solution for a(t) can be written as

aðtÞ ¼ GðtÞ að0Þ ð17Þ

where the vector a(0) defines the initial conditions.
Following the arguments in [8] we compute the set of

eigenvalues f	kgNk¼1 of the matrix G (T) where T = 2�/
St is the dimensionless period of oscillations. The
resulting solution is stable if all of the (complex)

characteristic exponents �k = ln 	k/T are such that Re
(�k) < 0. Note that the matrix G (T) is non-normal. For

the case of steady flow one has G (t) = exp (�t M�1 K)
and �k is one the eigenvalues of M�1K. The energy
growth G(t) of the initial perturbation defined by the

vector a(0) is given by (see Eq. (16))

Gðc; tÞ ¼ "ð ̂; tÞ
"ð ̂; 0Þ

¼ að0Þ	EðtÞað0Þ
að0Þ	Eð0Það0Þ

where

EðtÞ ¼ G ðtÞ	M G ðtÞ ð18Þ

The optimal initial condition aopt that gives the max-
imum growth Gopt(t) attained at time t satisfies the
following eigenvalue problem:

EðtÞaopt ¼ GoptðtÞEð0Þaopt ð19Þ

Note that Gopt(t), as a function of t, can be regarded as
the envelope of the energy evolution of individual opti-

mal initial conditions aopt giving the maximum growth
Gopt(t) at time t (see also [10]).

4.1. Numerical results

We consider a perturbation with wavenumber � = 1
and a strongly pulsatile forcing of the basic flow char-

acterized by the ratio K!/K0 = 2. The characteristic
exponents are plotted in Fig. 1 for a basic pulsatile flow
state described by Re = 1500, Wo = 38 and Kn = 0.1.

Fig. 1. Plots of the characteristic exponents f�kgNk¼1 for Kn = 0.1, Re = 1500, Wo = 38, Kw/K0 = 2 and wavenumber � = 1. For

comparison purposes, the plot of the eigenvalues of the steady Poiseuille flow (Kn = 0.1) is also shown. A Galerkin expansion

consisting of N = 30 terms was used.
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For comparison purposes, the plot of the eigenvalues of
the steady flow is also shown (Wo = 0). As one can see,
the negative characteristic exponents indicate the stabi-

lity of the flow. The eigenmodes having the highest
damping in Fig. 1 are spurious due to the numerical
error in computing G(T) by the Runge-Kutta method.

Shown in Fig. 2 for the case of the steady Poiseuille

flow (Re = 3500, � = 1, Wo = 0), is the least stable
eigenvalue as a function of the Knudsen number Kn for
two different values of the streamwise wave number

(� = 0.01, 0.3). A jump discontinuity occurs at Kn ’ 1/
8, implying a non-smooth behavior of the spectral
properties of the Orr-Sommerfeld operator. Depending

upon the values of both � and Kn the slip flow can be more

Fig. 2. Least stable eigenvalue for the case of steady Poiseuille flow as a function of the Knudsen number for different values of the

streamwise wavenumber � and � = 1.

Fig. 3. Plots of Gopt (t) for different values of the Knudsen number for Re = 3500, Wo = 30, � = 1 and � = 1.
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or less stable than the no-slip flow counterpart (see Fig. 2).
Note that this critical value of Kn is independent of
wavenumber; moreover, it can be predicted analytically

from the eigenvalue relation (13). The function F(�) =
J2(�) � 2sKn� J1 (�) is even and admits the following
Maclaurin series expansion for � << 1:

Fð�Þ ¼ 1

2

1

4
� 2sKn

� �
�2 þ 1

4!
� 1

4
þ 3sKn

� �
�4 þOð�6Þ

A non-trivial root

�
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

8sKn� 1

12sKn� 1

r

exists such that �
0
< 1 only if Kn > 1/8s; for Kn < 1/8s

all non-trivial roots exceed unity. Thus, as Kn increases

starting from zero (continuum, no-slip), the least stable
eigenvalue 0 = �2

0/Re is greater than Re�1 and varies
continuously until a critical value Knc = 1/8s is reached.

For Kn> 1/8s, 0 suddenly becomes less than Re�1. For
the case of steady flow with Re = 3500 the plots of
Gopt(t) versus t are reported for Kn = 0,0.03, 0.05 and

0.1 in Fig. 3. One finds the largest energy growth Gmax

decreases as Kn increases and thus the Orr-Sommerfeld
operator for slip flow is less non-normal than the case of

no-slip flow (Kn = 0).
For the particular case of steady flow (Kn = 0.1 and

Re = 3500) we computed the time evolution of the flow

disturbance which gives the largest energy growth (see
Fig. 4). The stream function of the initial flow pertur-
bation is given in Fig. 4(a) whose flow structures are
toroidal vortex tubes. In time the mean shear stress

Fig. 4. The evolution of the stream function of the optimal disturbance for Re= 3500, Kn= 0.1 and steady flow conditions (Wo= 0).

(a) t = 0 (b) t = 3.9, (c) 9.7, (d) 12.9.
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tends to stretch the vortex tubes (Fig. 4(b)), so that at
time t = tmax = 9.7 (Fig. 4(c)) the energy of the flow

attains its largest growth (Gmax ’ 1.4). Beyond this time
the vortex tubes tend to migrate closer to the centerline
where the effectiveness of the shear stress is diminished

and a decay in time occurs due to viscous effects occurs
(Fig. 4(d)).

5. Conclusions

In this paper we have examined the transport and

energy growth of axisymmetric disturbances in weakly
rarefied flows. The flow is found to be linearly stable
under all conditions; however, depending upon the

values of the perturbation wavenumber � and Kn the
slip flow can be more or less stable than the no-slip flow
counterpart. An abrupt change in the stability properties

is found to occur at the critical value of the Knudsen
number Kncr = (2 � �)/8�. For typical accommodation
coefficients [5] this amounts to a Knudsen number of Kn

’ 0.17 – 0.33, which lies within the assumed slip-regime
of our model. The Orr-Sommerfeld operator for slip
flow is less non-normal if compared to continuum-based
no-slip flow because the transient energy growth

decreases as the Knudsen number increases. The optimal
flow disturbance giving the largest energy growth con-
sists of toroidal vortex tubes that are stretched and

convected by the mean flow until viscous effects become
dominant and the structures diffusively decay.
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