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Abstract

Equilibria for the common two-dimensional, nine-velocity (D2Q9) Lattice Boltzmann equation are not uniquely

determined by the Navier–Stokes equations. An otherwise undetermined function must be chosen to suppress grid-scale
instabilities. By contrast, the Navier–Stokes–Fourier equations with heat conduction determine unique equilibria for a
one-dimensional, five-velocity (D1Q5) model on an integer lattice. Although these equilibria are subject to grid-scale

instabilities under the usual Lattice Boltzmann streaming and collision steps, the equivalent discrete Boltzmann
equation is stable when discretised using conventional finite volume schemes. For flows with substantial shock waves,
stability is confined to a window for the parameter controlling the mean free path. It is constrained between needing a

large enough mean free path (large enough viscosity) to provide dissipation at shocks, and a small enough mean free
path to ensure valid hydrodynamic behaviour.
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1. Introduction

Methods based on the Lattice Boltzmann equation
(LBE) have become very popular for simulating

incompressible fluids, for an overview see Chen et al. [1]
or Succi [2]. The most common form of LBE simulates a
compressible, isothermal fluid, and one chooses a ratio

of fluid to sound speeds (Mach number) small enough to
justify neglecting compressibility. The LBE is less well
developed for simulating fully compressible flows with

temperature variations, and possibly shock waves, or
even just barotropic fluids with alternative equations of
state like the shallow water equations.

Following the kinetic theory of gases, an LBE is an
evolution equation for a distribution function fi (x, t)
that specifies the number density of particles at a given
location moving with a given velocity �i,

@tfi þ �i � rfi ¼ �
1

�
fi � f

ð0Þ
i

� �
ð1Þ

Most current Lattice Boltzmann equations use the

Bhatnagar–Gross–Krook [3] collision operator on the
right-hand side of Eq. (1). This relaxes the distribution
function towards an explicitly specified equilibrium fi

ð0Þ

with a single timescale � . By contrast, the Maxwell–

Boltzmann equilibrium in continuum kinetic theory
emerges from Boltzmann’s binary collision operator as
the distribution that extremises entropy while conserving

mass, momentum, and energy. Determining the discrete
equilibrium distribution is usually the most challenging
part of constructing a viable LBE.

Macroscopic variables like fluid density � and
momentum �u, and their fluxes, are expressed as
moments of the distribution function. From the first few

moments of Eq. (1) we obtain

@t�þr � u ¼ 0; @tð�uÞ þ r �� ¼ 0; � ¼
X
i

fi;

�u ¼
X
i

�ifi; � ¼
X
i

�i�ifi ð2Þ

where the moments are expressed as sums rather than
integrals because the velocities are discrete.
The Chapman–Enskog expansion seeks slowly vary-

ing solutions to Eq. (1) such that the momentum flux �
and corresponding heat flux may be calculated without
knowledge of higher moments. One way to derive the
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equilibria for an LBE is thus to ensure that every dis-
crete moment of the equilibria that appears in the

continuum equations via the Chapman–Enskog expan-
sion coincides with the corresponding integral moment
of the continuum Maxwell–Boltzmann distribution. In

fact, He et al. [4] showed that the most common equi-
libria for the two-dimensional, nine-velocity (D2Q9)
lattice shown in Fig. 1 may be derived using Gaussian

quadrature to relate the discrete and integral moments.
However, Dellar [5] showed that Gaussian quadrature

fails for general equations of state, and in particular for
the shallow water equations. The resulting equilibria are

unstable, but different and stable equilibria were found
previously by Salmon [6]. The difficulty arises because
the moments appearing in the Chapman–Enskog

expansion do not determine the equilibria uniquely. By
deriving a wave equation describing short-wave density
fluctuations, Dellar [5] determined stable equilibria for

any barotropic equation of state. The same situation
arises when using a one-dimensional, five-velocity lattice
(D1Q5) with a barotropic equation of state.

For fully compressible, varying temperature flows, the
diffusive transport of heat provides an extra equation, so
the D1Q5 equilibria are uniquely determined. These
equilibria have not attracted much attention because

they lead to grid-scale instabilities when implemented
using the usual Lattice Boltzmann discretisation in space
and time, under which Eq. (1) is approximated by

�fiðxþ �i�t; tþ�tÞ � �fiðx; tÞ ¼ �
�t

� þ�t=2
�fiðx; tÞ�
	

f
ð0Þ
i ðx; tÞÞ ð3Þ

and the �fi are related to the fi by

�fiðx; tÞ ¼ fiðx; tÞ þ
�t

2�
fiðx; tÞ � fi

ð0Þðx; tÞ
� �

ð4Þ

One may go from the partial differential equation Eq. (3)
to a Lattice Boltzmann equation (1) by integrating along

characteristics with the trapezium rule for a timestep �t.
However, we find that these equilibria lead to stable

simulations when discretised using conventional finite

volume schemes. By contrast, the non-polynomial
equilibria proposed by Renda et al. [7] and Ansumali et
al. [8], produce solutions with noticeable artifacts (such

as the compound waves found by Dellar [9]) due to the
higher moments being incorrect. Moreover, the non-
polynomial equilibria found by Ansumali et al. [8] by
extremising a discrete entropy require a conventional

finite volume discretisation anyway, as their particle
velocities are not integer multiples of each other. One
might then just as well use the polynomial equilibria

given below. They are also stable and do not yield
unphysical artifacts.

2. Barotropic flow with the D1Q5 lattice

The most general equilibria yielding the one dimen-
sional Navier–Stokes equations, with barotropic
equation of state p = P (�) for the pressure p, may be
written as

fi
ð0Þ ¼ wið�þ �u�i þ 1

2ðPð�Þ � �þ �u
2Þ ð�2i � 1Þ þ 1

2�u
3

ð�3i � 3�iÞ þ giR
ð0ÞÞ ð5Þ

where R(0) is an arbitrary function of � (at least) that is
not determined by the Navier–Stokes equations. The
five lattice velocities are �i = i for i = �2, �1, 0, 1, 2,
with corresponding weights w0 = 1/2, w�1 = 1/6, and
w�2 = 1/12. The four Lattice vectors 1, �i, �

2
i �1 and �3i

�3�i are all orthogonal with respect to these weights.

They are completed by the vector gi = (1, �2, 1, �2, 1)
= �4i � 4�2i + 1 to form an orthogonal basis for R5.
For p = � and R(0) = 0, the equilibria in Eq. (5)

coincide with those proposed by Qian et al. [10] for an

isothermal equation of state with temperature �= 1. All
choices of R(0) lead to the same continuum equations in
the Chapman–Enskog expansion, but in general one

must choose R(0) = (��P(�))/2 for stability against grid-
scale oscillations, see Dellar [11]. The same situation
holds for the D2Q9 lattice, see Dellar [5].

3. Thermal flow with the D1Q5 lattice

The continuum Maxwell–Boltzmann equilibrium in
one spatial dimension is

fð0Þ ¼ �ffiffiffiffiffiffiffiffi
2��
p exp

ð� � uÞ2

2�

" #
ð6Þ

Fig. 1. Arrangement of velocity vectors �i, where i = 0, . . ., 8,

for the two-dimensional, nine-velocity (D2Q9) lattice.
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with the first five integral momentsZ
f ð0Þd� ¼ �;

Z
�f ð0Þd� ¼ �u;

Z
�2f ð0Þd� ¼ �ð�þ u2Þ

ð7aÞZ
�3f ð0Þd� ¼ �uð3�þ u2Þ;

Z
�4f ð0Þd� ¼ �ð3�2 þ 6�u2 þ u4Þ

ð7bÞ

All five moments appear in the Chapman–Enskog
expansion leading to the Navier–Stokes–Fourier equa-

tions describing gases with viscosity and thermal
conduction. The last moment

R
�4 f (0) d� controls

thermal diffusion. It does not appear in the barotropic

Navier–Stokes equations, which is why R(0) was pre-
viously arbitrary.

Matching the five moments in Eq. (7) defines a unique

set of equilibria for a discrete Boltzmann equation using
five particle velocities on an integer lattice. They may be
written as

fi
ð0Þ ¼ �wi 1þ u�i þ

1

2
ð�� 1þ u2Þ ð�2i � 1Þþ

�
1

2
ðu3 þ 3uð�� 1ÞÞ ð�3i � 3�iÞ

þ 1

2
ð1� 4�� 4u2 þ u4 � 3�2 þ �u2Þ

ð�4i � 4�2i þ 1Þ
�

ð8Þ

with the same weights wi and Lattice velocities �i = i as
before.

No freedom is left to adjust the equilibria to suppress
grid-scale instabilities, and the equilibria in Eq. (8) are
not useful in a conventional lattice Boltzmann method

like Eq. (3) because they are unstable. However, the
instabilities disappear if we allow ourselves to use other
spatial discretisations of Eq. (1) instead.

Figure 2 shows a simulation of Sod’s first shock tube

using the equilibria from Eq. (8) in a finite volume for-
mulation of Eq. (1) with Leonard’s [12] third-order
upwind fluxes, and the second order accurate Runge–

Kutta time integration described by Shu et al. [13]. The
grid had 8192 points, and the relaxation time was � =
0.2 in lattice units. The initial conditions correspond to a

stationary gas with density and pressure given by

� ¼ 1 and p ¼ 1 for x < 0;

� ¼ 0:125 and p ¼ 0:1 for x > 0 ð9Þ

Leonard’s [12] scheme gives extremely crisp shocks, at

the price of some overshoot in neighbouring grid points
unless the relaxation time � is carefully tuned to supply
adequate dissipation. The local Lax–Friedrichs or

Rusanov fluxes, and their second order extension by

Kurganov et al. [14], may also be used. A small bump is

also visible in the velocity, which is probably an artifact
of smoothing these discontinuous initial conditions with
a tanh profile over a few grid points. Both artifacts are

far less prominent than in other schemes using non-
polynomial equilibria.
For flows with substantial shock waves, like this

example, stability is confined to a window in the
relaxation time � . The viscosity (proportional to �) must
be large enough to provide dissipation at shocks, but the

mean free path (also proportional to �) must be small
enough to ensure hydrodynamic behaviour. In other
words, the Reynolds number Re and the Knudsen
number Kn must both be sufficiently small, while subject

to the constraint that Kn = Ma/Re for fixed Mach
number. For nearly-incompressible flows the Knudsen
number may be made small at any desired Reynolds

number by lowering the Mach number sufficiently.
For very large values of � the solution becomes stable

again, but does not describe hydrodynamics. The effect

of collisions is so weak that the solution resembles free

Fig. 2. Reproduction of Sod’s first shock tube using a finite

volume discretisation of the discrete Boltzmann equation with

� = 0.2. The Boltzmann solution has a slight overshoot at the

shock, and a small bump in the velocity.
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molecular flow. Figure 3 shows a typical example, with

� = 100 in lattice units.

4. Conclusion

Unlike most Lattice Boltzmann schemes for baro-
tropic equations of state, the equilibria for a one-

dimensional, five-velocity scheme simulating fully com-
pressible flow with varying temperature are uniquely
determined by the five moments necessary to recover the

Navier–Stokes–Fourier equations. These unique equili-
bria are polynomials in the fluid velocity u. Although
they lead to an unstable scheme using the standard
Lattice Boltzmann discretisation, they may be used

successfully with alternative finite volume discretisations
of the discrete Boltzmann PDE to simulate flows with
substantial shock waves. Any alternative equilibria will

give unphysical artifacts, like compound waves or
spikes, due to incorrect fluxes from the higher moments.
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Fig. 3. Return to stability, but not correct hydrodynamics, for

large values of � . The behaviour resembles free molecular flow,

which is stable since distribution functions are purely advected.
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