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Abstract

A methodology for the aeroelastic analysis of highly flexible slender structures is presented. The structural model is

based on an asymptotic approximation to the displacement field, which separates the problem into a long-scale problem
involving geometrically-nonlinear deformations of the reference line and a small-scale problem that captures defor-
mation in the cross section. The combination of them provides a three-dimensional solution to the structural dynamics

of flexible vehicles suitable for aeroelastic simulations.

Keywords: Slender structures; Asymptotic methods; Fluid–structure interaction

1. Introduction

A general characteristic of high aspect-ratio-winged
vehicles is that they are easily subject to large wing

deflections under aerodynamic loads, which yields sig-
nificant variations of the aircraft geometry during flight.
For a meaningful characterization of this situation,
aeroelastic analysis on very flexible vehicles should then

incorporate geometrically-nonlinear effects in the
description of the structural displacement field. Typi-
cally, these effects can be associated to the deformation

of a reference line in the structure, and the problem is
then usually studied using nonlinear beam models. Beam
models offer a good representation of the average

motions along the reference line, but they also assume
that cross sections remain rigid in the coupling with the
aerodynamics. Although this assumption works well

under smoothly distributed loads, local deformations
may affect the characteristics of the flow field in aero-
elastic analyses and a more detailed representation of
the structure including the small cross-sectional defor-

mations would be desirable. Asymptotic theories offer
an effective way of refining the kinematical description
of the deformation, as it was done for the analysis of

composite beams by Cesnik et al. [1], and later for the
general problem of 3-D electroelasticity by Palacios et
al. [2]. The presence of a small parameter (the inverse of

the wing aspect ratio) allows an asymptotic approx-

imation to the equations of elasticity in the 3-D domain,
which are then decomposed into two independent var-
iational problems: cross-sectional (small-scale) and

longitudinal (long-scale) analyses. The cross-sectional
problem solves the local deformation field for unit value
of the long-scale variables. The longitudinal problem
solves the average deformation of the reference line

under given external loads. Both problems are tightly
coupled and together provide the necessary description
of the displacement field in the 3-D domain. Further-

more, the longitudinal problem does not need to be
restricted to the usual degrees of freedom of beam
analysis and can be expanded through a modal expan-

sion in the cross-sectional displacement field. They are
measures of non-classical motions, such as plate-like
deformations in thin-walled structures, and are defined

as finite-section modes in [2]. This paper shows an
application of this methodology to define the solid side
in fluid–structure problems.

2. Asymptotic reduction of the dynamics of a slender

structure

Figure 1 shows the proposed scheme for the aero-

elastic analysis of slender structures. An arbitrary
reference line is first defined along the dominant
dimension of the undeformed structure, with curvilinear

coordinate x1. The pair (x2, x3) describes the planar
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cross sections, which do not need to be normal to the
reference line (i.e. oblique sections along aerodynamic
airfoils in a swept wing).

2.1. Small-scale problem

The slenderness parameter is now used to approx-

imate the strain energy per unit length as 2U(x1) =
R
CS

�T�dx2dx3, where � and � are the vector forms of the
local strain and stress tensors, respectively. The domain

of integration is the local cross section at x1. It is
assumed that the local elastic problem is linear (small
strains and local rotations).

The 1-D representation of the deformation of the
reference line is chosen at this point. The baseline are
naturally the four intrinsic deformation magnitudes for

the elastic curve, i.e. extension, �11, and three curvatures
{�1,�2,�3}. In addition to them, a set of finite-section
deformation modes are defined using assumed distribu-
tions of displacements in the cross section,  q(x2,x3).

The vector of their amplitudes, q(x1), as well as its
first derivative, q0(x1), adds elastic variables to the
reduced 1-D model, which is finally defined by

�={�11,�1,�2,�3,q,q
0}. Without any loss of generality,

the local small strain � in a cross section can be rewritten
in terms of the 1-D measures, �, and an unknown
warping field, �w, as

�ðx1; x2; x3Þ ¼ ���ðx1Þ þ �w �wðx1;x2;x3Þ þ �w0
@ �w
@x1
ðx1;x2;x3Þ

ð1Þ

where the �-operators are linear matrix operators
defined in [1]. At this point one can set up the small-scale
variational problem as

�U �w;�ð Þ ¼ 0; for � prescribed ð2Þ

�w is discretized using a finite-element representation in
the cross section and is then solved as a function of �
using asymptotic expansions in the small parameter. As

a result of this linear optimal problem, one gets a set of
warping influence coefficients (WIC), defined as
WIC ¼ @ �w

@�, with which the strain energy can be rewritten

as a bilinear operator in the 1-D variables, whose coef-
ficient matrix defines the stiffness per unit length:

S ¼ I WICT
� � @2U

@�2
@2U
@�@ �w

@2U
@ �w@�

@2U
@ �w2

" #
I

WIC

� �
ð3Þ

Fig. 1. Scheme for aeroelastic simulations using asymptotic reduction of the structure.
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The mass matrix corresponding to the selected 1-D
description of the beam kinematics is obtained by a

similar procedure, starting with the kinetic energy per
unit length. See [2] for further details.

2.2. Long-scale problem

The dynamics at the reference line are analyzed under

the following assumptions:
1. large displacements and global rotations of the

reference line;

2. small values of strains and local rotations;
3. small amplitudes of the finite-section modes, q.
A geometrically-exact description the kinematics of the

reference line is used. Appropriate differentiation in time
and space of the displacement/rotation variables
{u(t,x1), �(t,x1)} yields the beam velocities {V(t,x1),
�(t,x1)}, and strains {�(t,x1), �(t,x1)}. The amplitudes of

the finite-section modes, q(t,x1), and their corresponding
strain and velocity measures, q0 and _q, are then super-
imposed. The final independent variables in the reduced

1-D problem are

zðt; x1Þ ¼ u; �; q; �; �; q0;V;�; _qð Þ ð4Þ

The kinetic and strain energy per unit length, T and U,
and the work per unit length of the external forces, W,
can be written in terms of those variables, what defines

all magnitudes for the long-scale variational problem.
For each continuous subcomponent in the 1-D domain
of arclength l, Hamilton’s Principle is invoked. This is

solved with a spatial finite-element discretization of z,
named Z, which yields time-domain nonlinear equations
of the form

AðZÞ � _Z ¼ FSðZ; Ẑx¼0; Ẑx¼lÞ � FL

BCðẐx¼0Þ ¼ 0 and BCðẐx¼lÞ ¼ 0 ð5Þ

where A is the inertia matrix operator, Fs is the struc-
tural vector operator, and FL is the force vector
operator. Ẑ contains the boundary values of the state

vector Z, and BC are boundary conditions.

2.3. Definition of the fluid–structure interface

All previous results are combined at each time step to
recover the actual displacements in the original domain.

Let r(t,x) be the instant position vector of a point
(x1,x2,x3) in the fluid-structure interface in the unde-
formed configuration, and let �=(0,x2,x3) be the

position of that point in its corresponding cross section.
Its position vector after deformation is

R ¼ rðt; x1Þ þ uðt; x1Þ þ �ðt; x1Þ � �ðx2;x3Þ þ  qðx1;x2;x3Þ
qðt; x1Þ þWICðx1;x2;x3Þ�ðt; x1Þ ð6Þ

At each time step, this structural displacement field is
passed to the mesh deformation algorithm that updates

the fluid domain discretization before the next iteration
in the fluid-dynamics equations. Finally, integration
along the contour of each cross section of the aero-

dynamic forces per unit surface, f, give the contributions
per unit length to the force vector operator FL in Eq. (5),
i.e.

F ¼
I

fds;M ¼
I
� � fds; Fq ¼

I
 q � fds ð7Þ

3. Application to a modified AGARD445.6 wing

The present structural formulation is coupled with the
Euler equations in ENS3DAE [3] using MDICE [4] and
is applied to the AGARD445.6 wing [5]. Although this is

clearly not a slender configuration, the availability of
CFD grids and a good number of benchmark results
made this wing a good test case for the implementation
of the proposed formulation. The cantilever wing has

quarter-chord sweep angle of 458, root chord
cr=0.5588m, semispan b=0.762m, and taper ratio
0.66. A modified (weakened) structural model is defined

for the purposes of the present analysis, based on a
constant-thickness isotropic material for the skin and
the spar. The parameters in the analysis are skin and

spar thickness, t, free-stream Mach number, M1, and
root angle of attack, �. Flight is set at sea-level and the
location of the spar at 40% of the local chord.
Generation of the cross-sectional and longitudinal

finite-element models is automated for easy para-
meterization of the geometric configuration and material
distribution. In order to consider the variation of

properties along the span, properties are computed at
the oblique sections at wing root and tip and inter-
polated in the interior points. Warping information is

only stored in a subset of the structural grids on the
airfoil outer skin. The reference line is at the ¼-chord
line. Five degrees of freedom are used in the 1-D model,

including extension, twist, bending in two directions,
and camber bending. The latter is defined by the finite-
section mode of Fig. 2, given by

 q x2; x3ð Þ ¼ 0; 0; rþ s
2x2
c

� �
þ 2x2

c

� �2
" #

ð8Þ

where x2 is the oblique chordwise coordinate referred to
the mid-chord. r and s are included to remove the plunge
and pitch components of the mode and are computed

numerically. For the static aeroelastic analysis, a con-
vergence criterion is defined in the two-norm of Z.
Figure 3 shows the change in the Mach contours

between the rigid and deformed wing for t=1mm,
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M1=0.96, and �=28. For this case, tip deflection is

0.052b, tip pitch 0.338, and maximum amplitude of
camber bending is qmax=1.4 � 10�4b (at 55% of span).
The spanwise distribution of force coefficients for vary-
ing thickness is shown in Fig. 4, with coefficients defined

as:

CF ¼
F

1
2�V

2cr
;CM ¼

M
1
2�V

2c2r
;CFq

¼ Fq

1
2�V

2cr
ð9Þ

4. Conclusions

A new methodology for the aeroelastic analysis of
highly-flexible slender wings has been introduced. It is
based on an asymptotic decomposition of the 3-D elastic

problem that provides an accurate representation of the
deformation field in the case of large global displace-
ments and rotations. Although the model is based on the

reduction to the dynamics along a reference line, an
arbitrary definition of the 1-D state variables is included
to account for any possible deformation. As an example,

the static aeroelastic characteristics of a wing based on

Fig. 2. Finite-section mode for camber-bending deformation.

Fig. 3. Rigid (left) and static aeroelastic (right, t=1mm) distributions of Mach number on the upper wing at M1=0.96, �=28.

C.E.S. Cesnik, R. Palacios / Third MIT Conference on Computational Fluid and Solid Mechanics 615



the AGARD445.6 were studied using a five degrees-of-
freedom model that included camber-bending

deformation.
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