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Abstract

This paper is devoted to decomposition-reconstruction methods in the analysis of turbulence data, issued from a

Direct Numerical Simulation of the two-dimensional Navier-Stokes equations. The Proper Orthogonal Decomposition
(POD) method, based on the Hilbert-Schmidt theory, will be combined with the matching pursuit algorithm in order to
localize the turbulent flow patterns that are coherents with a particular dictionary.
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1. Introduction

The matching pursuit (MP) algorithm, introduced by
Mallat [1], allows a clever decomposition of a given
signal s into a linear combination of functions (also

called atoms), which are selected from a redundant
dictionary of signals with normalized energy equal to 1.
These atoms are selected in order to best fit the structure
of the signal. The first selected atom d1 is chosen so that

the modulus j<s, d1>j of its correlation coefficient with
s is maximal; then d2 is chosen within the dictionary so
that

s� s; d1h i d1; d2h ij j ð1Þ

is maximal, and so on. The sequence of coefficients is
decreasing and indicates the order in which the corre-
sponding atoms are selected. In the case of orthogonal

bases, the number of iterations equals the number of
atoms needed for a required ratio of reconstruction as a
new atom is selected at each iteration.

2. The MP algorithm with POD modes

The POD, also called Karhunen-Loeve decomposi-
tion [2], is a classical method developed in statistics.

Given a random process U, the overall algorithm can be
summarized as follows:

1. Compute the autocorrelation matrix A of a set of
realizations (also called ‘snapshots’) of U, U1, . . ., Uq.

2. Perform the Singular Value Decomposition of A,
and thus organize the eigenvalues of A (the singular
values) in decreasing order: 	1 � 	2 � . . ..

3. Take m � q and select an orthonormal system (in the
L2 sense) of vectors (�ij, 1�i�q, j = 1, . . ., m, such
that (�ij)i is an eigenvector with respect to the
eigenvalue 	j.

4. Compute the POD modes

Vj :¼
Xq
i¼1

�ijUi; j ¼ 1; . . . ;m

When m = q this four-step process provides the best
(orthogonal) basis for the set of realizations {U1, . . ., Uq}

with respect to the L2 norm.

2.1. Application to one-dimensional signals

Let us consider a signal s (of length 40 000), corre-
sponding to the recording of the vorticity at one point
along time. We divide s1 = s(1 : 39936) into 39 con-

secutive non-overlapping segments of length 1024. Each
segment plays the role of a snapshot, thus leading to a
dictionary of 39 snapshots and to an autocorrelation
matrix of size 39 � 39. The POD algorithm then pro-

vides 39 POD modes of length 1024 [3].
The MP algorithm implemented as in [4] is applied to

a family of 305 segments of length 1024, which are

obtained by translation of 128 points from s1. In Fig.
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1(a) are plotted the absolute values of the MP coeffi-
cients (from dark gray for the biggest ones to light gray
for the smallest ones) obtained when decomposing each
of the 305 segments. The clear vertical strips show the

intermittencies of the signal. In addition, Fig. 1(b) shows
that in these strips, taking away the 39 snapshots, the
reconstruction rate (always using the whole set of POD

modes) is much lower.

2.2. Application to two-dimensional images

Starting from 200 snapshots, obtained for successive
time steps, one can calculate the 200 POD modes, by

using the same method as above. We represent in Fig. 3
the reconstructions of the original field (Fig. 2), with 20
POD modes as follows: using the first 20 (most ener-

getic) modes, provided by the decreasing sequence of the
singular values (Fig. 3(a)) and with the most significant
20 modes, provided by the first 20 iterations of the

matching pursuit (Fig. 3(b)). One can see that the

(a)

Fig. 1. Influence of the position of the segments on the MP decomposition with the POD modes dictionary. (a) MP coefficient

intensity; (b) reconstruction rate.

(b)
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reconstruction is closer to the original image in the
second figure (which keeps 65.67% of the Frobenius
norm) than in the first figure (rebuilding only 27.76% of
the energy) as the coherent structures are better cap-

tured. The field of Fig. 3(b), obtained by the MP
algorithm, has more vortex cores located in the correct
place than the field of the Fig. 3(a), where only a few

coherent structures are visible. Using more modes it is
possible in both cases to reconstruct completely the
original snapshot.

One can wonder, when a POD mode basis is built

using a subset of the snapshots, if it is possible to
reconstruct one of the snapshots that are not used to
construct the basis. The answer is no, as the rate of the
reconstructed energy is less than 70%, even with all the

available POD modes.

(a)

(b)

Fig. 3. The first snapshot of the vorticity rebuilt with 10% of the total number of POD modes: (a) with the first 20 POD modes; (b)

with the 20 POD modes chosen by MP.

Fig. 2. The vorticity image (also the first snapshot).

Ch.H. Bruneau et al. / Third MIT Conference on Computational Fluid and Solid Mechanics600



3. Conclusions

The implicit order of the POD modes is given by the
decreasing sequence of the eigenvalues, that are related
to the energy content of these modes. Thus the POD

method orders the modes after their average importance
for each snapshot. Therefore, it is possible that for a
particular snapshot not the most energetic POD modes

are the best adapted to obtain a predefined reconstruc-
tion rate. The MP algorithm is able to find these most
significant modes.
The combination of the above methods appears to be

efficient for analyzing one of the snapshots, but turns
out to be less adapted for a segment randomly chosen in
the signal or for a different image.
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