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Abstract

Making use of the knowledge of the motions of three point vortices in a planar incompressible flow, which are

integrable, we investigate the motions of three-point vortices in a half-plane as perturbations of the original integrable
system. Numerical investigations are carried out to show whether the perturbations will remain small or will diverge,
respectively, from those corresponding to stable or unstable critical points of the original ones.
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1. Introduction

The dynamics of three point vortices in a plane was
analyzed and shown to be integrable by Gröbli [1] and
Synge [2]. Their results were re-derived via Hamiltonian

formalism by Novikov [3] and Aref [4]. Tavantzis and
Ting [5] continued Synge’s analysis using trilinear
coordinates to obtain an integral invariant defining the
integral curves or trajectories representing the variations

of the configuration or triangle formed by the three
vortex centers. They identified all the critical points and
separatrices for a given set of strengths and initial

positions of the three vortices.
Numerical studies of the motions of three vortices of

equal strength in a half-plane were carried out by Knio

et al. [6]. The vortex configurations can be regular or
chaotic depending on their initial configuration, which
was taken to be either an equilateral triangle or colli-

near. These results reveal the connections to the
dynamics of three vortices in the plane for which the
equilateral configuration corresponds to a center while
the collinear configuration with one vortex in the middle

corresponds to a saddle point [2]. This observation
initiated the studies of the interactions of three co-axial
vortex rings in a meridian plane as a perturbed planar

three-vortices problem (the original problem) by
Blackmore and Knio [7]. With a typical ratio of the
distances between the rings to their radii as the small

parameter, they proved the existence of quasi-periodic
solutions when the three vortices have the same sign.

Certainly, the original problem has to be elliptic. (It is
called elliptic, parabolic or hyperbolic [2] when the sum
of the mixed products of the strengths of vortex pairs is

positive, zero, or negative.) For the original system, it
was shown [2] that the equilateral configuration is stable,
corresponds to a center, (unstable, a saddle point) when
it is elliptic (hyperbolic). They found quasi-periodic

solutions on invariant tori when the initial configuration
is nearly equilateral [7]. When it is parabolic, there is a
critical curve in trilinear coordinates, points at which the

configurations remain stationary up to a similarity, i.e.
the triangles remain similar. The equilateral triangle lies
on the critical curve and divides it into two segments,

representing expanding and contracting similar trian-
gles, respectively. It was shown in [5] that the expanding
similar solution is stable while the contracting one is

unstable. Recently, Ting and Blackmore [8] described
the bifurcations from a stationary point of contracting
similar solutions along an integral curve ending at a
point on the branch representing expanding triangles.

Here we study the perturbed three-vortex problem when
the initial configuration is nearly an equilateral triangle,
which is unstable in the original problem for the

hyperbolic and parabolic cases.
In the next section, we review the formulation of the

original three-point vortex problem, define the symbols,

summarize the results of Synge [2], and Tavantzis and
Ting [5], and then formulate the perturbed problems. In
Section 3, we explain our choice of the points of
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reference between the original problems and the per-
turbed problems, and describe the input data for the

numerical investigations. The interpretation of the
numerical results is then presented.

2. Background

Following the symbols of [2] and [5], we denote the
strength of a vortex kj to its circulation �j by kj = �j/2�,
j = 1, 2, 3, and the position of the vortex center in the

complex plane by zj(t) = Rezj + iImzj.
Using the conservation of linear and angular

momenta for the motion of the vortex centers, a three

degree-of-freedom (six-dimensional) problem was
reduced to a one degree-of-freedom (two-dimensional)
problem for the variation of the sides of the triangle G,
i.e. the trajectory of point R(t) in space, where Rj

denotes the side of the triangle facing the vertex zj; for
example, R3 = jz1 � z2j. Synge projected the trajectory

in Rj space radially onto the point x on the �� plane,
where R1 + R2 + R3 =

ffiffiffiffiffiffiffiffi
2=3

p
, and introduced the

trilinear coordinates xj = Rj/(R1 + R2 + R3). Here xj
denotes the side of a similar triangle with perimeter 1,

i.e. x1 + x2 + x3 = 1. The transformation from Rj to xj
is one-to-one, except in the parabolic case where there is
a critical curve on the �� plane and every point on the

critical curve corresponds to the radial line in the R

space.
The �� coordinates in the plane are related to xj by,

� = x3 and � = (x2 � x1)/
ffiffiffi
3
p

. The inverse transfor-
mation is unique, x3 = �, x2 + x1 = 1 � � and x1 = [1
� � � �

ffiffiffi
3
p

]/2, x2 = [1 � � + �
ffiffiffi
3
p

]/2. Owing to the
triangle inequality, the admissible solutions xj are con-

fined in the �� plane to the triangle with vertices (
1/4,ffiffiffi
3
p

/4) and (0,0) and its opposite side (back face) for
vortex centers having the opposite orientation.

With the sum of the products of two different vortex
strengths defined by, K = k1k2+k2k3+k3k1, the

motions of the three vortices are classified [2] as elliptic,
parabolic, or hyperbolic according as K is greater, equal,
or less than zero, respectively.

The equilibrium points of the vortex configurations
are either the equilateral triangle E : xj = 1/3 or the
collinear configurations. Their stabilities depend on the

classification. For example, the equilateral configuration
is stable (unstable) for the elliptic (hyperbolic) cases.
Synge presented two integral invariantsP3
j¼1 kj

�1Rj
2 ¼ a and

Q3
jþ1 Rj

1=kj ¼ b for the motion in

Rj space. This was reduced to a single integral invariant
in the trilinear coordinates or for �� by Tavantzis and
Ting [5] for K 6¼ 0 and one for K = 0. We shall replace

the first one by its � K/(2k3)- th power, so that the new
invariant is valid for all K. It is

½
X3
j¼1

x2j
kj
�K=ð2k3Þ½

Y
3
j¼1x

1=kj
j �

k1k2 ¼ const: �I ð1Þ

When the original system is perturbed, the variation of �I
provides a measure of the deviation from the original
problem.
We consider two types of perturbations: (i) pertur-

bation of the initial data of the original problem, and (ii)
three vortices in a half-plane considered as perturbation
of the original problem.
A perturbation of type (i) leads to a small change of

the constant �I, i.e. which then remains constant
throughout the course of the motion. The initial trajec-
tory moves to a neighboring one, accounting for a small

change in �I. Therefore, we shall carry out only numerical
studies of type (ii) in the next section.

Fig. 1. Evolution of �I for the parabolic (left) and hyperbolic (right) cases. Plotted are curves for the unperturbed system (solid) and for

type (ii) perturbation (dash).
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3. Numerical investigations

We study the perturbed problems for three vortices in
a half-plane with the initial positions of the vortex cen-
ters forming an equilateral triangle. The initial positions

are

z1 ¼ x0 þ 10:1667i; z2 ¼ x0 � 9:8333i; z3 ¼ 10i;

with x0 ¼ �1=ð2
ffiffiffi
3
p
Þ ð2Þ

Without loss of generality, we assume k2 = 1 and k1 �
k2 � k3 and assign k1 = 2 and k3 = �2/3 for the

parabolic case, where K = 0, and k1 = 2, k3 = �1.25
for the hyperbolic case with K = �1.75.

The variations of �I from the invariant of the unper-

turbed problem for the parabolic and hyperbolic cases,
respectively, are shown in Fig. 1. We see that although
the perturbation due to the boundary of the half-plane is

O(1/30), the variations in �I are finite and irregular, and
more so for the hyperbolic case, for which the equi-
lateral triangle corresponds to a (unstable) saddle point.

Some details of the deviations are shown in Figs. 2–4.
Figure 2 and Fig. 4 show the motions of the vortices

with respect to the center of vorticity (centroid-weighted
by the vortex strengths) of the configuration in the
complex z plane with x, y denoting the real and ima-

ginary parts of z. For the unperturbed case, in Fig. 2 and
in 4, the configuration remains almost periodic due to
the high-order numerical accuracy. For the perturbed

parabolic case, as shown in Fig. 2, the vortex config-
uration is expanding. Thus the perturbation moves the
configuration to a stable expanding similar configura-
tion. For the perturbed hyperbolic case, shown in Fig. 4,

the motion is highly irregular. Figure 3 shows another
aspect of the disturbed hyperbolic case via the variation
of �(t), which is (x2 � x1)

ffiffiffi
3
p

. For the undisturbed case,

� looks periodic and nonpositive, that is, R2 � R1, while
for the perturbed problem, we see that �(t) is aperiodic
and changes sign, over a longer duration for R2 > R1.

Thus we have some numerical verification of the
connection of the type of deviations of the perturbed
problem, small and near periodic, or finite and aper-

Fig. 2. Motion of the three vortices with respect to the centroid for the parabolic case, k3 = �2/3. Left: original system; right: type (ii)

perturbation.

Fig. 3. Evolution of � for the hyperbolic case, k3 = �1.25. Left: original system; right: type (ii) perturbation.
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iodic, to the stability of the original problem. Additional
numerical studies of the perturbed problems near other

critical points of the original problem [5] will be carried
out in future investigations.
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Fig. 4. Motion of the three vortices with respect to the centroid for the hyperbolic case, k3 = �1.25. Left: original system; right: type

(ii) perturbation.
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