
Nonsimilar solution of an unsteady mixed convection flow on a

moving slender cylinder

D. Anilkumar*, S. Roy

Department of Mathematics, Indian Institute of Technology, Chennai, 600036, India

Abstract

A general analysis has been developed to study the flow and heat transfer characteristics of an unsteady laminar

mixed convection on a continuously moving vertical slender cylinder. The governing boundary layer equations along
with the boundary conditions are first cast into a dimensionless form by a nonsimilar transformation and the resulting
system of nonlinear coupled partial differential equations is then solved by an implicit finite difference scheme in

combination with the quasilinearization technique.
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1. Introduction

Unsteady mixed convection flows do not necessarily

admit similarity solutions in many practical situations.
Flows over cylinder are usually considered to be two
dimensional as long as the body radius is large com-
pared to the boundary layer thickness. On the other

hand, for a slender cylinder, the radius of the cylinder
may be of the same order as that of the boundary layer
thickness. Therefore, the flow may be considered as

axisymmetric instead of two dimensional. Mixed con-
vection flow over a slender vertical cylinder due to the
thermal diffusion has been considered by Chen et al. [1]

and Mucoglu et al. [2] for the constant wall temperature
and constant heat flux conditions, respectively. Subse-
quently, Bui et al. [3], Wang et al. [4] and, most recently,

Takhar et al. [5] have solved this problem using an
implicit finite difference scheme. All the above studies
pertain to steady flows. In many practical problems, the
flow could be unsteady. Therefore, as a step towards the

eventual development on unsteady mixed convection
flows, it is interesting as well as useful to investigate the
combined effects of transverse curvature, viscous dis-

sipation and thermal diffusion on a continuously
moving vertical slender cylinder.

2. Analysis

We consider the unsteady laminar mixed convection

flow along a heated vertical slender cylinder. The
unsteadiness in the flow field is introduced by the
cylinder velocity and free stream velocity which vary
with time. The flow is taken to be axisymmetric and the

Boussinesq approximation is invoked for the fluid
properties to relate density changes to temperature
changes. Under the above assumptions, the governing

boundary layer equations can be expressed as [5,6,7]
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The initial conditions are

uð0; x; rÞ ¼ uiðx; rÞ; vð0; x; rÞ ¼ viðx; rÞ;
Tð0; x; rÞ ¼ Tiðx; rÞ ð4Þ

and the boundary conditions are given by

uðt; x;RÞ ¼ uwðtÞ ¼ uw;0�ðt�Þ; vðt; x;RÞ ¼ 0;*Corresponding author. Tel.: +91 (44) 2257 8492; Fax: +91
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Tðt; x;RÞ ¼ Tw; uðt; x;1Þ ¼ ueðtÞ ¼ u1�ðt�Þ;
Tðt; x;1Þ ¼ T1 ð5Þ

Here x and r are axial and radial co-ordinates and u, v

are the velocity components in the axial and radial
directions, respectively; t is the time; g is the acceleration
due to gravity; � and � are thermal diffusivity and
kinematic viscosity, respectively; K is the thermal con-

ductivity; T is the temperature in the boundary layer;
and � is the volumetric co-efficient of thermal expansion.
Applying the following transformations:
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to Eqs. (1)–(3), we find that Eq. (1) is identically satis-

fied, and Eqs. (2)–(3) reduce to
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The boundary conditions for these equations are

expressed by

Fð�; 0; t�Þ ¼ �; Gð�; 0; t�Þ ¼ 1 for 0 � t�; � � 1

Fð�;1; t�Þ ¼ 2; Gð�;1; t�Þ ¼ 0 for 0 � t�; � � 1

ð9Þ

where � ¼ 2 uw
ue

� �
and fð�; �; t�Þ ¼

R �
0 Fdx:

Here � is the similarity variable; � is the transverse
curvature; f and f� are the dimensionless stream func-
tions and velocity components, respectively; G and t*
are the dimensionless temperature and time respectively;

Rex is the Reynolds number; Pr is the Prandtl number;
Grx is the Grashof number, 	 is the buoyancy para-
meter; �(t*) is the function of t* with first order

continuous derivative; cp is the specific heat at constant
pressure; and 
 is constant.
The quantities of physical interest are as follows [6,7]:

The local surface skin friction coefficient given by
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The local Nusselt number can be expressed as
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3. Method of solution

The set of dimensionless equations (7)–(8) under the
boundary conditions (9) with the initial conditions
obtained from the corresponding steady state equations

has been solved numerically using an implicit finite
difference scheme in combination with the quasilinear-
ization technique. Since the method is described by
Inouye et al. [8], its detailed description is not presented

here for the sake of brevity. In brief, the non-linear
coupled partial differential equations were replaced by
an iterative sequence of linear equations following the

quasilinearization technique. The resulting sequence of
linear partial differential equations were expressed in
difference form using the central difference scheme in the

�-direction and the backward difference scheme in the �-
and t*-directions. In each iteration step, the equations
were then reduced to a system of linear algebraic equa-

tions with a block tri-diagonal structure, which is solved
by using Varga’s algorithm [9]. A convergence criteria
based on the relative difference between the current and
previous iteration values are employed. When the dif-

ference reaches less than 10�4, the solution is assumed to
have converged and the iterative process is terminated.

4. Results and discussion

The computations have been carried out for various
values of Pr (0.7 � Pr � 7.0), 	 (0 � 	 � 3), � (0 � � �
2) and Ec (0 � Ec � 0.3). The edge of the boundary layer

�1 is taken between 3 and 5 depending on the values of
parameters. The results have been obtained for both
accelerating (�(t*) = 1 + 
t*2, 
 > 0, 0 � t* � 1) and

decelerating (�(t*) = 1 + 
t*2, 
 < 0, 0 � t* � 1) free
stream velocities of the fluid. In order to validate our
method, we have compared steady state results of skin-

friction and heat transfer coefficients (F�(0, 0), G�(0, 0),)
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with those of Chen et al. [1] and Takhar et al. [5], and the
results are found to be in excellent agreement.

The effects of the surface curvature parameter � (or

the axial distance) and the buoyancy parameter 	 on the
velocity and temperature profiles (F, G) for accelerating
flow �(t*) = 1 + 
t*2, 
 = 0.5, when � = 1, Ec = 0.1,

Pr = 0.7 and 7.0, are displayed in Figs. 1–2. Also, the

effects of � and 	 on the skin friction and heat transfer
coefficients are presented in Fig. 3. The action of the
buoyancy force shows the overshoot in the velocity

profiles (F) near the wall for lower Prandtl number
(Pr = 0.7) but for higher Prandtl number (Pr = 7.0) the
velocity overshoot in F is not observed as shown in Fig.

1. The reason is that the buoyancy force (	) effect is

Fig. 1. Effects of 	 and Pr on F and G for �(t*) = 1 + 
t2, 
 = 0.5 when Ec = 0.1, � = 1, � = 0.5.

Fig. 2. Effect of � on F and G for �(t*) = 1 + 
t2, 
 = 0.5 when 	 = 1, Pr = 0.7, Ec = 0.1, � = 1.
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larger in a low Prandtl number fluid (Pr = 0.7, air) due

to the lower viscosity of the fluid, which enhances the
velocity as the assisting buoyancy force acts like a
favorable pressure gradient and the velocity overshoot

occurs. For a higher Prandtl number fluid (Pr = 7.0,
water) the velocity overshoot is not present because a
higher Prandtl number fluid implies a more viscous fluid,

which makes it less sensitive to the buoyancy parameter
	. The effect of 	 is comparatively less on the tempera-
ture (G), as shown in Fig. 1. Due to the increase in the
surface curvature parameter �, the steepness in the

velocity and temperature profiles (F, G) near the wall
increases, but the magnitude of the velocity overshoot is
slightly decreased, as can be seen in Fig. 2. Further from

Fig. 3, it is observed that the skin friction and heat
transfer coefficients ðRe

1=2
x Cf;Re

�1=2
x NuÞ increase with

the increase of the buoyancy parameter 	. The physical

reason is that the positive buoyancy force (	 > 0)
implies a favorable pressure gradient and therefore the
fluid gets accelerated, which results in thinner momen-

tum and thermal boundary layers. Consequently, the
local skin friction and Nusselt number are also increased
at any time (t*), as shown in Fig. 3.
Figures 4 and 5 display the effects of Pr and Ec for

accelerating and decelerating freestream flows on the
local skin friction and heat transfer coefficients
ðRe

1=2
x Cf;Re

�1=2
x NuÞ, where � = 1.0 and 	 = 1.0. It is

found from Fig. 4 that the skin friction coefficient
decreases with the increase in the Prandtl number.
Because the higher Prandtl number means that the fluid

is more viscous, this increases the boundary layer

thickness and consequently reduces the shear stress. On

the other hand, Fig. 5 reveals that the surface heat
transfer rate increases significantly with Pr, as the higher
Pr fluid has a lower thermal conductivity, which results

in a thinner thermal boundary layer and hence a higher
heat transfer rate at the wall. It is observed from Fig. 5
that, due to increase of the viscous dissipation parameter

Ec, Re
1=2
x Cf increases but Re

�1=2
x Nu decreases, with a

more pronounced effect on the heat transfer coefficient
ðRe

�1=2
x NuÞ. In particular, it is found for an accelerating

flow (
= 0.5) that the percentage decrease of Re
�1=2
x Nu

for an increase in Ec from 0 to 0.2 at t* = 1.0 is 100%,
as compared to 10% of Re

1=2
x Cf for the same data. This

behavior is in support of the common fact that the vis-

cous dissipation affects the thermal boundary layer more
than the momentum boundary layer. In the case of an
accelerating flow, Fig. 4 shows that both skin friction

coefficient and heat transfer rate increase with time t*
and that the effect of the time variations is found to be
more pronounced on the skin friction coefficient than on

the heat transfer rate, because the change in the free-
stream velocity with time strongly affects the velocity
component.

5. Conclusions

Results indicate that the skin friction and heat
transfer coefficients are significantly affected by the time-
dependent freestream velocity distributions. It is found

that the buoyancy force enhances the skin friction

Fig. 3. Effects of 	 and � on Re1=2
x Cf and Re�1=2

x Nu for �(t*) = 1 + 
t 2, 
 = 0.5 when Pr = 0.7, Ec = 0.1, � = 1.
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coefficient and Nusselt number. In the presence of the
buoyancy force, the velocity profile exhibits velocity

overshoot for lower Prandtl numbers. Further, it is
noted that the curvature parameter steepens both the
velocity and temperature profiles, but injection (A < 0)

does the reverse. The heat transfer rate is found to

depend strongly on viscous dissipation, but the skin
friction is little affected by it.

Fig. 4. Effect of Pr on Re1=2
x Cf and Re�1=2

x Nu for �(t*) = 1 + 
t2, 
 = 0.5 and 
 = �0.5 when 	 = 1, Ec = 0.1, � = 1, � = 0.5.

Fig. 5. Effect of Ec on Re1=2
x Cf and Re�1=2

x Nu for �(t*) = 1 + 
t 2, 
 = 0.5 and 
 = �0.5 when 	 = 1, Pr = 0.7, � = 1, � = 0.5.
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