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Abstract

A new arbitrary reference configuration (ARC) elasticity theory is proposed in the paper for finite strain dynamic

applications with both the attempt to circumvent the deficiencies associated with the hyperelasticity and hypoelasticity
theories. The corresponding stress update formulation and the ARC Lagrangian formulation is also developed. Some
numerical examples are shown to demonstrate the effectiveness of the proposed theory.
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1. Introduction

In computational finite strain dynamic analysis of
isotropic elasto-plastic materials three major aspects are
involved: the constitutive models, the finite element

formulations, and the time integration methods. This
paper focuses on the constitutive models and the finite
element formulations. Besides the plasticity of the
material, two kinds of the elasticity models are primarily

used for the computational finite strain dynamic analy-
sis: the Saint-Venant-Kirchhoff grade one hyper-
elasticity and the Jaumann stress rate grade zero

hypoelasticity. In terms of the finite element formula-
tions with Lagrangian mesh, the total Lagrangian (TL)
formulation and the updated Lagrangian (UL) for-

mulation are widely used. However, for finite
deformation analysis there are some drawbacks asso-
ciated with the existing approaches: (i) the Saint-

Venant-Kirchhoff grade one hyperelasticity is not sui-
table to model finite strain phenomena [1]; (ii) the
multiplicative decomposition approach for Saint-
Venant-Kirchhoff hyperelasto-plasticity will result in

non-symmetric plastic flow rule [2]; (iii) the incremental
stiffness matrix for the Jaumann stress rate grade zero
hypoelasticity is nonsymmetric [3]; (iv) the update

Lagrangian formulation requires iterations to achieve
the current configuration [4]. With the attempt to over-
come the aforementioned drawbacks, we propose here a

new arbitrary reference configuration (ARC) elasticity
theory and the corresponding arbitrary reference con-

figuration Lagrangian formulation.

2. Constitutive models

We first consider two simple constitutive models: (i)
the Saint-Venant-Kirchhoff model (grade one hyper-
elasticity), and (ii) the grade zero Truesdell stress rate

hypoelasticity model. Then we propose the ARC elas-
ticity theory.

2.1. Hyperelasticity

Here we consider the simplest of the hyperelastic

models, namely, the Saint-Venant-Kirchhoff model, of
which the stored energy function is given by
’ðEt
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is the Saint-

Venant-Green strain tensor. The stress–strain relation is
given by St
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¼ C : Et

t0
, where C = �I6I + 2
I is the

elasticity tensor and I is the second-order identity tensor,

I is the fourth-order identity tensor, � and 
 are the
Lamé material coefficients, and St
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is the second Piola–

Kirchhoff stress tensor.
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constitutive equation then can be mapped into the t�
configuration as
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2.2. Hypoelasticity

Hypoelasticity is mostly defined through corotational

stress rates such as the Zaremba–Jaumann–Noll rate,
the Green–McInnis–Naghdi rate, the twirl tensor of
Eulerian triad stress rate, and the logarithmic stress rate.

Due to the fact that the corotational stress rates relate to
the Lagrangian stress or the Lagrangian stress rate
through the Truesdell stress rate, the resulting mapped
Lagrangian elasticity modulus only possesses minor

symmetry but does not possess major symmetry when
the grade zero corotational stress rate hypoelasticity is
employed. To obtain the major symmetry of the elasti-

city modulus for grade zero hypoelasticity, the use of the
Truesdell rate grade zero hypoelasticity has been sug-
gested in the literature. Here we adapt the Truesdell rate

grade zero hypoelasticity, which is given as �

 � = C : D,

and subject to the initial conditions �(t�) = �t�, where
the elasticity tensor C is constant, and the velocity strain

D and the Truesdell rate of Cauchy stress �

 � are one-

point tensors. Therefore, the hypoelasticity model is
path dependent, and numerical integration along the
deformation path to obtain the Cauchy stress at time t is

necessary. In order to perform the numerical integration
over a certain time period, the Truesdell rate grade zero
hypoelasticity of equation needs to be mapped to a fixed

configuration. Considering the relations:
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and Jtmid
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t� , the Cauchy stress

becomes:

Zt
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Thus we have a second-order accurate stress update

formulation for the grade zero Truesdell stress rate
hypoelasticity.

2.3. ARC elasticity

Replacing the Green strain measure by the ARC
Green strain measure in the hyperelasticity models yields

a new class of elasticity models which we term as the
ARC elasticity. For example, the Saint-Venant-Kirchh-
off hyperelasticity can be modified to yield the simplest

model for ARC elasticity, of which the stored energy
function is given by ’t

t0
¼
P

�
i¼1’

ti
ti�1 þ ’t

ta
and

’t
t�
¼ �

2 ðtrE
t
t�
Þ2 þ 
trðEt
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Þ2. The ARC stress–strain

relation thus is given by Zt
t�
¼ C : Et

t�
, where C= �I 6 I

+ 2
I .
Following the derivation described previously, the

Cauchy stress is obtained as:

Zt
ta
¼ �t þ C : Et

t�
ð3Þ

Thus the ARC elasticity can recover Eq. (1) by setting
Ct0t� ¼ C.

2.4. Rate constitutive equations of plasticity

For non-softening plasticity, the principle of max-
imum plastic dissipation (or the maximum dissipation
postulate) [5], is described by (& � �, D � (C*)�1 : �
 �) �
0, � 2 <3 � <3, F (�) � 0 F (&) � 0, 8& 2 <3 � <3, where
F : <3 � <3 7! < is a convex yield function in the Cauchy
stress space and C* is the elastic modulus. The principle
of maximum plastic dissipation implies an associative

(normality) flow rule in Cauchy stress space for plasti-
city strain rate. Introducing a Lagrangian multiplier �p

2 < into the variational inequality of equation, yields

the stress–strain relation and the Kuhn–Tucker com-
plementarity form of loading/unloading conditions for
non-softening plasticity can also be derived from the

Drucker’s hardening postulate. Thus:

�

 � ¼ C	 : D� �pr�Fð�Þ½ � ð4Þ
Fð�Þ � 0; � � 0, �pFð�Þ ¼ 0 ð5Þ

3. Stress update formulation

From the discussion in the previous section we have

the following stress update formulation for elasticity as:
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For hyperelasticity, choose
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where t�� ¼ t� ��t and Ct0t0 ¼ C. For hypoelasticity,
choose t� = tmid and C* = C. For the ARC elasticity,
choose t� = t� and C* = C.

3.1 Weak form of constitutive equation

Let D(w) be the variation of the velocity strain D(v).
According to the definition of the variation, the varia-
tion of the ARC Green strain tensor 
Et

t�
ðwÞ is obtained

as 
Et
t�
ðwÞ ¼ ðFt

t�
ÞTDðwÞFt

t�
. Similarly, we have the

relationship of the variations between D(w) and

ð�t� Þ

t
t�
ðwÞ as 
ð�t� Þ

t
t�
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t�
ÞTDðwÞFt

t�
.

Let �t� be the domain of the body at a reference

configuration at time t�, and again considering the
relationship of the variation between D(w) and

ð�t� Þ

t
t�
ðwÞ, the weak form of the constitutive equation

becomes:

ðDðwÞ; �ðtÞÞ�t
¼ ð
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Remark 1

1. Equation (7) is termed as the ARC Lagrangian

formulation.
2. When setting t� = t0, equation (7) corresponds to

the total Lagrangian formulation.

3. When setting t� = t, equation (7) corresponds to the
updated Lagrangian formulation.

The illustrations of the ARC Lagrangian formulation,

the total Lagrangian formulation, and the updated
Lagrangian formulation are shown in Figs. 1(a)–1(c),
respectively.

4. Numerical examples

The numerical simulation of the Taylor impact test [6]
is performed to verify the present developments. The
Taylor impact test fires a solid cylinder against a massive

rigid target with a flat surface, and then measures the
deformed length and the diameter of the solid cylinder.
The Taylor impact test uses high-strength low-alloy

HSLA 100 high strength steel with impact velocity of
245.7 m/s�1 as shown in [6]. The configuration of the
HSLA 100 high-strength steel cylinder is given by the

initial length L0 of 38mm and initial radius R0 of
3.795mm. The material parameters of the Zerilli–Arm-
strong strength model fitted by the split Hopkinson

pressure bar (SHPB) test data for the (HSLA) 100 high-
strength steel are obtained from [6]. The simulation is
performed by modeling one quarter of the cylinder with
a total 19 712 nodes and 17 163 8-noded brick elements.

The time integration method of the algorithm employs
the forward displacement central difference (FDCD)
method. The simulation was performed using 8000 time

steps and the final time is 70 �s with the time step of
0.875 � 10�8 s. The final configuration and the von
Mises effective plastic strain distribution at a time of 70


s of the simulation for both the ARC model and Jau-
mann rate model are shown in Fig. 2(b) and 2(c). The

simulation results in comparison with the experimental
result are shown in Table 1. The average error �� is

computed by, �� ¼ 1
2

�Lj j
L	 þ

�Rj j
R	

� �
, where �L and �R are

the difference of the final length and radius for the
simulation with respect to the experimental values, and

L* and R* are the final length and radius of experi-
mental values. The simulation results for the ARC
model and the Jaumann rate model are almost identical.

Both the ARC model result and the Jaumann rate model
result agree well with the experimental result. The ARC
model consumed about 20% less CPU time than that of
the Jaumann rate model. The additional CPU time

consumed by the Jaumann rate model is primarily due
to the Polar decomposition of the incremental defor-
mation gradient tensor which is required by the

Jaumann rate model.

5. Remarks

There are numerous issues associated with the current
approaches for computational finite strain dynamic
analysis of isotropic elasto-plasticity materials. With the
attempt to resolve these issues, we proposed to employ

the incremental infinitesimal strain measure to compute
the incremental stress and then map exactly the total
stress to the current configuration as the arbitrary

reference configuration, namely, the ARC Lagrangian
formulation and the corresponding ARC elasticity. The
stress update formulations for the ARC Lagrangian

formulation were then derived. Finally, numerical
simulations were shown to demonstrate the effectiveness
of the ARC Lagrangian formulation for finite defor-
mation problems in comparison with the total

Lagrangian (or the equivalent updated Lagrangian
formulation).

Fig. 1. Illustration of ARC Lagrangian formulation (a), total Lagrangian formulation (b), and updated Lagrangian formulation (c).
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Table 1

Comparison of Taylor impact test numerical simulation with experimental results for the HSLA 100 high-strength steel

Exp. [6] ARC Jaumann rate

L*/L0 0.838 0.819 (�2.26%) 0.819 (�2.26%)

R*/R0 1.581 1.561 (�1.67%) 1.561 (�1.67%)
�� N/A 1.965% 1.965%

"max
p N/A 1.4208 1.4202

CPU (s) N/A 18,104 21,668

Fig. 2. Experiment and numerical results of Taylor impact test. (a) Experiment result [6]. (b) ARC model result. (c) Jaumann rate

result. (Fig. 2a reproduced with permission from [6].)
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