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Abstract

Elastic fields of a pavement resting on a granular base are studied considering the presence of existing thermal failure
discontinuities (thermal cracks) typically observed in cold climates. The analysis endeavors towards the accurate

prediction of crack spacing in asphalt pavements. A two-dimensional theoretical solution is derived and validated by
comparison to numerical simulations. A simple method for obtaining an approximation of crack spacing is presented,
which involves comparison of elastic fields to material tensile strength. The shear stress distribution can be used to

predict the propensity towards debonding along the interface of the pavement surface and an underlying granular layer.
An extension of this work to rigorously consider crack initiation and crack propagation using a cohesive zone fracture
model and a viscoelastic constitutive model for the bulk material is underway.

Keywords: Elastic fields; Pavements; Discontinuity spacing; Thermal stress; Low temperature cracking; Tensile
strength

1. Introduction

When an asphalt pavement is subjected to a thermal
loading due to the ambient temperature change, thermal

cracking can form across the width of the pavement [1].
Thermal cracking is one of the most devastating dis-
tresses that can occur in asphalt pavements in cold
climates. Various empirical and mechanistic-empirical

models [2] have been proposed to predict crack amount
or crack spacing in a pavement. However, the thermal
stress distribution in pavements has not been directly

analyzed in those models though it is the dominant
factor controlling thermal crack development.
To investigate the elastic fields of pavements, numer-

ical methods [3,4] have been used to calculate the local
stress and strain. Because the mechanical response of
pavements depends upon material properties, interface
properties, and geometry, while the quality of numerical

simulations depends heavily on the quality of meshing,
discretization aspects, etc., it is difficult to reliably obtain
elastic fields for general cases from limited available

numerical simulation results. Thus, closed-form

analytical solutions are a valuable tool for researchers

for model verification and, ultimately, to gain a better
understanding of mechanical responses and damage
mechanisms in pavements and similar structures [5].

Shen et al. [6] and Timm et al. [7], respectively,
developed a one-dimensional (1D) model to predict
tensile stress distribution in a pavement with frictional
constraint. However, because the friction forces are

driven from the bottom of the pavement and tempera-
ture distribution is not uniform in the thickness
direction, the thermal stress will significantly change

along the thickness of the pavement and a considerable
shear stress will be induced along the bottom of pave-
ment. Obviously, a 1D model can solve neither the

thermal stress distribution in the thickness direction nor
the shear stress distribution in the pavement, so a two-
dimensional (2D) model is necessary to better analyze
the thermal stress distribution.

In this paper, we first solve the general solution of
displacement field for a 2D pavement subjected to a
negative temperature change and having a linear tem-

perature gradient as a function of depth. Considering
the frictional boundary condition and thermal failure
discontinuities, we explicitly obtain the displacement

field in the pavement. Comparison with numerical
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simulations obtained by the finite element method
(FEM) is used to verify the integrity of the proposed

model. By considering the strength of the pavement
materials, a procedure for estimating the thermal dis-
continuity spacing is then presented. Using the shear

stress solution, a method for evaluating the propensity
for debonding along the interface between the pavement
and base layer in the vicinity of discontinuities is pre-

sented. It is noted that all material properties are taken
as linear elastic for the current work. A discussion of
model limitations and extensions is presented in
Section 4.

2. Formulation

Consider an infinitely long pavement (width w,

thickness h, Young’s modulus E, Poisson’s ratio �,
thermal expansion coefficient �) resting upon a granular
base as illustrated in Fig. 1. With a change in ambient

temperature, the top and bottom of the pavement will
undergo different temperature changes, denoted as T1

and T2 (T1 < T2), respectively. Uniformly spaced dis-
continuities (thermal cracks) separated by a uniform

distance of 2� across the width of pavement are mod-
eled. Here we set up the coordinates with the origin at
the center between two discontinuities as seen in Fig. 1.

The pavement is assumed to be homogeneous mate-
rial. An approximation of the steady state temperature
distribution can be easily obtained as:

T yð Þ ¼ T2 þ T1 � T2ð Þy=h ð1Þ

As the pavement is assumed to be bonded with the base
layer, the cohesive force keeps the bottom of the pave-
ment still in the plane. Because the thickness of the

pavement is much smaller than its length and the top
surface is free, generally the top surface of pavement
remains approximately flat during the temperature

change if no debonding happens along the interface
between the pavement and the base. Thus, we assume
that all points of a plane normal to the y direction is still

in the same plane after deformation, i.e.

uy x,yð Þ ¼ uy yð Þ ð2Þ

Because the upper surface is free, the thermal strain in
the y direction is not constrained. Thus, we assume that

the stress in the y direction is zero, i.e.

�y x,yð Þ ¼ 0 ð3Þ

For this 2D elastic problem, the constitutive law is:

�x ¼ E "x � �Tð Þ, �xy ¼ 
�xy ð4Þ

Considering the equilibrium condition in x direction, we
can write:

Eux,xx þ 
ux,yy ¼ 0 ð5Þ

Using the method of separation of variables, we can find
the general solution as:

ux x,yð Þ ¼ A1e
cx þ A2e

�cxð Þ B1 sin dyð Þ þ B2 cos dyð Þ½ �
ð6Þ

where A1, A2, B1 and B2 are constants to be decided by

the boundary conditions and d ¼
ffiffiffiffiffiffiffiffiffi
E=


p
c.

From the symmetry of the geometry and the free
upper surface, we write:

ux 0,yð Þ ¼ 0; ux,y x,hð Þ ¼ 0 ð7Þ

Using the above boundary conditions, we simplify Eq.

(6) as follows:

ux x,yð Þ ¼ B ecx � e�cxð Þ cos d h� yð Þ ð8Þ

Along the bottom of the pavement, the interfacial fric-
tion force may provide a resistance to the displacement

in the x direction such that:

�xy x,0ð Þ ¼ kux x,0ð Þ ð9Þ

where k is the friction coefficient for unit thickness.
Substituting Eq. (8) into Eq. (9), we obtain:

d ¼ k


 tan dhð Þ ; c ¼
ffiffiffiffiffiffiffiffiffi

=E

p
d ð10Þ

It is noted that d is solved numerically by a recursive
method.
Along the surface of the discontinuity, the stress �x

should be zero. Due to the assumptions implied by Eqs.

Fig. 1. A 2D pavement with discontinuities due to thermal loading.
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(2) and (3), this boundary condition cannot be rigor-
ously satisfied at every point. Here we set the total

normal force as zero, namely:

Z h

y¼0
�x �,yð Þdy ¼ 0 ð11Þ

Substituting Eq. (1) into Eq. (4) and Eq. (4) into Eq. (11)
yields:

B ¼ �dh T1 þ T2

2c sin dhð Þ ec� þ e�c�ð Þ ð12Þ

Thus, we obtain the explicit solution in Eq. (8) with
constants d and in c in Eq. (10), and B in Eq. (12).

3. Results and discussion

To verify the integrity of the proposed analytical
model, comparisons are made with an FEM simulation

by the software DIANA (DIsplacement ANAlyzer).
Here we use E = 14.0GPa; v = 0.2; � = 1.8*10�51/K;
T1 = �30K; T2 = �25K; h = 0.2m; � = 4m. We
draw the displacement distributions in the x direction at

the top and the bottom of the pavement as seen in Fig. 2.
The model developed by Timm et al. [7] is also shown in
this figure but it can only provide identical prediction for

both the top and the bottom of the pavement because it
is a 1D model. Figure 2 shows that the proposed theo-
retical prediction of the displacement is very close to

FEM simulation whereas in the neighborhood of the
discontinuity the FEM simulation provides a slightly
higher estimate at the bottom and a lower estimate at the
top. The 1D prediction provides a smaller prediction

when x is small. In the neighborhood of the dis-
continuity, the prediction is between those at the top and

bottom for either the FEM simulation or 2D theoretical
prediction.

Figure 3 shows the comparisons of stress distributions
in the x direction at the top and the bottom of the
pavement. Because three methods provide very close

predictions in the range of 0 � x � 2.0m, as seen in Fig.
2, we only show the range of 2.0m � x � 4.0m. In Fig.
3(a) we can see on the top surface the proposed 2D

model provides a good agreement with the FEM simu-
lation for tensile stress except at the neighborhood of the
discontinuity as expected, whereas the 1D prediction is
not as close to the FEM simulation. Figure 3(b) illus-

trates tensile stress and shear stress distributions along
the bottom of the pavement. In the neighborhood of the
discontinuity the FEM simulation presents a large

change with respect to the proposed model solution due
to the singular effect. In the other range, the proposed
2D model fits the FEM simulation well for both tensile

stress and shear stress. However, the 1D prediction only
provides tensile stress, which is lower than the 2D pre-
diction and the FEM simulation.

In Fig. 3 we can find that the maximum tensile stress is
at the midpoint on the top surface and the maximum
shear stress is at the bottom of the discontinuities, and
the maximum tensile stress is higher than the maximum

shear stress. Substituting Eq. (8) into Eq. (4) we obtain:

�max
x ¼ E �dh

T1 þ T2

sin dhð Þ ec� þ e�c�ð Þ � �T1

� �
;

�max
xy ¼ 
�d2h

T1 þ T2

2c
tanh c�ð Þ ð13Þ

where the former is positive and the latter is negative at

low temperature. With the decrease of the ambient
temperature, the maximum tensile stress increases.
When it reaches the tensile strength of the pavement

material, S, a new discontinuity would be initiated from

Fig. 2. Displacement distributions along the top and bottom surface of pavement.
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the midpoint on the top surface. Then the maximum
tensile stress will move to the midpoint of the new

interval, at a magnetude that is much lower than the
tensile strength. Thus given the geometry, material
properties, and temperature distribution of a pavement,

we can solve the critical discontinuity spacing �c, in
which the maximum tensile stress is equal to the tensile
strength, i.e. �max

x (�c) = S. Thus, we can calculate the
critical discontinuity spacing �c [5,7]. Although the

maximum shear stress is not as considerable as the
tensile stress, when the interface between the pavement
and the granular base is not strong, the shear stress may

induce the debonding of the interface starting at the
bottom of the discontinuities, which will cause curling of
the pavement.

4. Limitations and extensions

It is noted that the pavement material is assumed to be
linear elastic for the current work. Although this may be
a reasonable approximation at very low temperatures

[7], a rigorous consideration of crack initiation and
crack propagation and a viscoelastic constitutive model
for the bulk material is ultimately needed. In addition,

pavement temperature gradients may also be nonlinear.
Nevertheless, the current elastic analysis is an important
first step in this direction, as it establishes a rigorous

baseline that can be used in the development of pave-
ment simulations with time-dependent and/or non-linear
material properties and interface conditions. Future

modeling efforts are planned to compare this model with
field data from Mn/ROAD facilities and laboratory
data.
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Fig. 3. Stress distributions along (a) the top and (b) bottom surface of pavement.
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