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Abstract

A new dimension-reduction method based on most probable point (MPP) is presented for predicting reliability of

mechanical systems subject to random loads, material properties, and geometry. The method involves univariate
function representation at MPP, approximate response surface generation using dimension reduction, and Monte-Carlo
simulation. The method yields higher-order approximation of a performance function without requiring any gradients.

Results of two numerical examples involving an elementary mathematical function and a structural truss problem
indicate that the proposed method provides accurate and computationally efficient estimates of the probability of
failure.
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1. Introduction

A fundamental problem in reliability analysis entails
calculation of a multi-fold integral [1]

PF � Pr g Xð Þ < 0½ � ¼
Z
gðxÞ<0

fxðxÞdx, ð1Þ

where X ¼ fX1, � � � ,XNgT 2 <N is an input random
vector representing loads, material properties, and geo-
metry, with joint probability density function, fx(x), g(x)

is the performance function, such that g(x)<0 repre-
sents the failure domain, and PF is the probability of
failure. The most common approach to compute the

failure probability in Eq. 1 involves the first- and sec-
ond-order reliability methods (FORM/SORM), which
are based on linear (FORM) or quadratic approxima-

tion (SORM) of the limit-state surface at a most
probable point (MPP). Experience has shown that
FORM/SORM are sufficiently accurate for engineering
purposes, provided that the limit-state surface at MPP is

close to being linear or quadratic, and no multiple MPPs
exist [1]. Otherwise, the results of FORM/SORM should
be interpreted with caution. Recently, the authors have

developed new dimension-reduction methods, which can

solve highly nonlinear reliability problems more accu-
rately or more efficiently than FORM/SORM and other

simulation methods [2]. A major advantage of the
dimension-reduction methods, so far based on mean
point of random input, over FORM/SORM is that
higher-order approximations of performance functions

can be achieved without calculating MPP or gradients.
However, for a certain class of reliability problems,
existing dimension-reduction methods may require

computationally demanding higher-variate (bivariate,
trivariate, etc.) reductions to adequately represent per-
formance functions. Hence, developing univariate

dimension-reduction methods, which are capable of
producing computationally efficient, yet sufficiently
adequate performance functions, is the major motiva-

tion of the current work.
This paper presents an MPP-based univariate

dimension-reduction method for predicting reliability of
mechanical systems subject to random loads, material

properties, and geometry. The method involves uni-
variate function representation at MPP, approximate
response surface generation using dimension reduction,

and Monte-Carlo simulation. Numerical examples are
presented to illustrate the proposed method.
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2. Dimension-reduction at most probable point

2.1. Univariate function representation

Consider a continuous, differentiable, real-valued

performance function g(x) that depends on x =
{x1,. . .,xN} 2 <N. The transformed limit states h(u) = 0
and y(v) = 0 are the maps of the original limit state

g(x) = 0 in the standard Gaussian space (u space) and
the rotated Gaussian space (� space), respectively, as
shown in Fig. 1 for N= 2. The closest point of the limit-
state surface to the origin, denoted the MPP (u* or v*)

or beta point, has a distance �, commonly referred to as
the reliability index. The determination of MPP and �
involves standard nonlinear constrained optimization

and is usually performed in the standard Gaussian space
[1]. Fig. 1 depicts FORM and SORM approximations of
the limit-state surface at MPP.

Suppose that the performance function y(v) = 0 has a
convergent Taylor expansion at MPP
v	 ¼ v1

	, � � � ,vN	f gT, which can be expressed by:

yðvÞ ¼ yðv	Þ þ
X1
j¼1

1

j!

XN
i¼1

@jy

@vji
v	ð Þðvi � vi

	Þj þ R2 ð2Þ

where the remainder R2 denotes all terms with dimen-

sion two and higher. Consider a univariate
approximation of y(v), denoted by:

ŷ1ðvÞ � ŷ1ðv1, � � � ,vNÞ ¼
XN
i¼1

yðv1	, � � � ,vi�1	,vi,viþ1	,

� � � , vN	Þ � ðN� 1Þyðv	Þ ð3Þ

where each term in the summation is a function of only

one variable and can be subsequently expanded in a
Taylor series at v = v*, yielding:

ŷ1ðvÞ ¼ yðv	Þ þ
X1
j¼1

1

j!

XN
i¼1

@jy

@xji
v	ð Þðvi � vi

	Þj ð4Þ

Comparing Eqs. 2 and 4 indicates that the univariate
approximation leads to the residual error y(v) � ŷ1ðvÞ ¼
R2, which includes contributions from terms of dimen-
sion two and higher. For sufficiently smooth y(v) with
convergent Taylor series, the coefficients associated with

higher-dimensional terms are usually much smaller than
that with one-dimensional terms. In that case, higher-
dimensional terms contribute less to the function and,

therefore, can be neglected. Nevertheless, Eq. 3 includes
all higher-order univariate terms, as compared with
FORM and SORM, which only retain linear and

quadratic terms, respectively. Hence, ŷ1ðvÞ yields more
accurate representation of y(v) than FORM/SORM.
Furthermore, Eq. 3 represents exactly the same function

as y(v) when yðvÞ ¼
PN
i¼1

yiðviÞ, when y(v) can be additively

decomposed into functions yi(vi) of single variables.

Fig. 1. Performance function approximations at MPP by various methods.
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2.2. Response surface approximation

Consider the univariate terms yi(vi) �
y(v1*,. . .,vi�1*,vi,vi+1*,. . .,vN*) in Eq. 3. If for vi = vi

(j), n
function values:

yiðviðjÞÞ ¼ yðv1	, � � � ,vi�1	,viðjÞ,viþ1	, � � � ,vN	Þ; j ¼ 1,2, � � � ,n
ð5Þ

are given, the function value for arbitrary vi can be
obtained using the Lagrange interpolation as:

yiðviÞ ¼
Xn
j¼1

�jðviÞyiðviðjÞÞ ð6Þ

where the shape function �j(�i) is defined as:

�jðviÞ ¼

Qn
k¼1,k 6¼j

vi � vi
ðkÞ� �

Qn
k¼1,k6¼j

viðjÞ � viðkÞð Þ
ð7Þ

By using Eq. 6, arbitrarily many values of yi(vi) can be

generated if n function values are given. Therefore, the
total cost for univariate approximation entails nN + 1
function evaluations. More accurate multivariate

approximations can be developed in the similar way.
However, because of much higher cost, only univariate
approximation will be examined in this paper.

2.3. Monte-Carlo simulation

For component reliability analysis, the Monte-Carlo
estimate PF,1 of the failure probability employing the
proposed univariate representation is:

PF;1 ¼
1

NS

XNS

i¼1
I ŷ1 vðiÞ

� �
< 0

h i
ð8Þ

where v(i) is the ith realization of V, NS is the sample size,
and I[�] is an indicator function such that I= 1 if v(i) is in
the failure set (i.e. when ŷ1ðvðiÞÞ< 0) and zero otherwise.

3. Numerical examples

3.1. Example 1 – mathematical function

Consider a quartic performance function:

gðX1;X2Þ ¼
5

2
þ 1

216
X1 þ X2 � 20ð Þ4� 33

140
X1 � X2ð Þ

ð9Þ

where Xi 7!Nð10; 3Þ; i ¼ 1; 2 are independent, Gaussian

random variables, each with mean 
 = 10 and standard

deviation �= 3. From the MPP search involving finite-
difference gradients, the MPP in the rotated Gaussian

space is v* = {0,2.5}T and � ¼ v	k k ¼ 2:5, as shown in
Fig. 2. In addition, Fig. 2 plots limit states represented
by various approximate reliability methods considered

in this paper. For the dimension-reduction methods, five
uniformly distributed points between 
�2� and 
+2�
were deployed at each dimension (i.e. n = 5), resulting

in 11 function evaluations. According to Fig. 2, the
MPP-based dimension-reduction method produces the
best approximation of the limit-state function for this
particular problem. The performance function using

mean-point based dimension reduction method degen-
erates to a single point (see Fig. 2), leading to a null
failure set.

Table 1 shows the results of the failure probability
calculated by FORM, three variants of SORM due to
Breitung [3], Hohenbichler et al. [4], and Cai and

Elishakoff [5], mean-point-based univariate dimension-
reduction method [2], proposed MPP-based univariate
dimension-reduction method, and direct Monte-Carlo

simulation using 106 samples. The MPP-based dimen-
sion-reduction method generates an excellent estimate of
the failure probability. The dimension-reduction method
using mean point, which yields poor approximation of

the performance function (see Fig. 2), failed to provide a
solution. Other commonly used reliability methods, such
as FORM and SORM (all three variants), overpredicted

the Monte-Carlo result by more than 200%. The SORM
results are the same as the FORM results, indicating
that there is no improvement over FORM for this highly

nonlinear problem.

3.2. Example 2 – ten-bar truss structure

A ten-bar, linear-elastic, truss structure, as shown in

Fig. 3, was studied in this example to examine the
accuracy and efficiency of the proposed reliability
method. The Young’s modulus of the material is 107 psi.

Two concentrated forces of 105 lb are applied at nodes 2
and 3, as shown in Fig. 3. The cross-section area Xi, i =
1,. . .,10 for each bar is normally distributed random

variable with mean 
 = 2.5 in2 and standard deviation
� = 0.5 in2. According to the loading condition, the
maximum displacement [(v3(X1,. . .,X10)] occurs at node
3, where a permissible displacement is limited to 18 in.

Hence, the limit-state function is:

gðXÞ ¼ 18� v3 X1; � � � ;X10ð Þ ð10Þ

From the MPP search involving finite-difference gra-

dients, the reliability index is � = kv*k= 1.3642. Table
2 shows the failure probability of the truss, calculated
using the proposed MPP-based univariate dimension-

reduction method, mean-point based univariate
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dimension-reduction method [2], FORM, three variants
of SORM [3,4,5], and direct Monte-Carlo simulation
(106 samples). For the dimension-reduction method, five

uniformly distributed points between 
�2� and 
+2�
were deployed for function evaluations at each dimen-
sion. As can be seen from Table 2, both versions of the

dimension-reduction method predict the failure prob-
ability more accurately than FORM and all three
variants of SORM. This is because both dimension-
reduction methods are able to approximate the perfor-

mance function more accurately than FORM and
SORM. A comparison of the number of function

evaluations, also listed in Table 2, indicates that the
mean-point-based dimension-reduction is the most effi-
cient method. The number of function evaluations by

the MPP-based dimension-reduction method is slightly
larger than FORM but much less than SORM.

4. Conclusions

A new MPP-based univariate dimension-reduction
method has been developed for predicting reliability of
mechanical systems subject to random loads, material

properties, and geometry. The method involves

Table 1

Failure probabilities for mathematical problem

Method Failure probability Number of function evaluations(a)

Mean-point-based univariate dimension-reduction [2] –(b) –(b)

MPP-based univariate dimension-reduction 0.002822 31(c)

FORM 0.006209 21

SORM (Breitung) [3] 0.006208 212

SORM (Hohenbichler et al.) [4] 0.006208 212

SORM (Cai and Elishakoff) [5] 0.006206 212

Direct Monte-Carlo simulation 0.002865 1,000,000

(a) Total number of times the original performance functions is calculated.
(b) Failed to provide a solution.
(c) 21 + (2 � 5) = 31.

Fig. 2. Performance function approximations in Example 1.

D. Wei, S. Rahman /Third MIT Conference on Computational Fluid and Solid Mechanics532



univariate function representation at MPP, approximate
response surface generation using dimension reduction,
and Monte Carlo simulation. The method yields higher-
order approximation of a performance function without

requiring any gradients. Two numerical examples
involving an elementary mathematical function and a
structural truss problem illustrate the proposed method.

Results indicate that the proposed method provides
accurate and computationally efficient estimates of the
probability of failure.
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Table 2

Failure probabilities for ten-bar truss

Method Failure probability Number of function evaluations(a)

Mean-point-based univariate dimension-reduction [2] 0.1364 51(b)

MPP-based univariate dimension-reduction 0.1431 177(c)

FORM 0.0863 127

SORM (Breitung) [3] 0.1286 506

SORM (Hohenbichler et al.) [4] 0.1524 506

SORM (Cai and Elishakoff) [5] 0.1467 506

Direct Monte-Carlo simulation 0.1397 1,000,000

(a) Total number of times the original performance functions is calculated.
(b) (10 � 5) + 1 = 51.
(c) 127 + (10 � 5) = 177.

Fig. 3. A ten-bar truss structure.
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