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Abstract

The presence of a cutout in a laminated composite plate is of interest to the analysts. The main objective here is to
study the interaction curves for a laminated composite plate with a centrally located cutout subjected to in-plane and

shear loading, using a simple higher-order shear deformation theory based on four displacement functions (u0, v0, wb,
ws) instead of the five that are commonly used in most higher-order theories. The finite element method is employed to
study the buckling of laminated plates.
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1. Introduction

Composites offer unique opportunities in design.

Composite plates with cutouts are extensively used in
many structures because of their high stiffness–to–
weight and strength–to–weight ratios. Cutouts change

the mechanical behavior of plates. Hence the stability
analysis of plates with cutouts is of technical importance
for understanding the behavior of systems under differ-

ent types of loading. Various plate theories have been
developed over the years to understand the mechanical
behavior of composite laminates. Some studies [1,2]

have shown that the transverse shear effect is quite sig-
nificant in layered composite plates due to the high ratio
of elastic modulus to shear modulus, which makes
classical laminate plate theory unsuitable for the analy-

sis. To produce a better representation of the shear
distribution across the thickness, Reddy [3] proposed a
higher-order shear deformation theory with five

unknowns. A simplified theory proposed by Lim et al.
[4] involves only four unknowns instead of the five for
Reddy [3]. This simplified theory allows using C1 con-

tinuous plate bending element, which is free from any
shear locking effect. The stability of plates with perfo-
rated holes is studied by Yettram and Brown [5]. They

employ conjugate/load displacement method to analyze
the structural stability of perforated plates. Prabhakara
and Dutta [6] studied the vibration and buckling beha-
vior of plates with centrally located cutouts. In this

investigation the interaction curves for composite plates
with a centrally located cutout have been studied.

2. Formulation for buckling load

A plate theory proposed by Lim et al. [4] for isotropic
plates is discussed and extended to a laminated com-
posite plate. The displacement field includes classical
plate theory and first-order shear deformation theory as

its subset and accounts for the parabolic variation of
transverse shear strains, which also accounts for the
surface boundary condition of zero transverse shear

stress (and hence shear strains) at the top and bottom
surfaces of the plate.
The displacement field V (x, y, z) is expressed as

fVðx,y,zÞ ¼ ½uðx,y,zÞ,vðx,y,zÞ,wðx,y,zÞ�gT ð1Þ

where u (x, y, z), v (x, y, z) and w (x, y, z) are given by

u ðx,y,zÞ ¼ u0ðx,yÞ � zwb,xðx,yÞ þ z2’xðx,yÞ þ z3�xðx,yÞ

v ðx,y,zÞ ¼ v0ðx,yÞ � zwb,yðx,yÞ þ z2’yðx,yÞ þ z3�yðx,yÞ

w ðx,y,zÞ ¼ wbðx,yÞ þ wsðx,yÞ ð2Þ

where u0 and v0 are the mid-plane displacements along
the x and y directions.
The transverse displacement component wb is such

that its derivatives are numerically equal to the rotation
of the cross section (i.e. ’ = �r wb) and ws is the
displacement due to the effect of transverse shear

deformation of the cross section.
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The linear strain displacement relationships for the
higher-order theory under consideration can be written

as follows.

"xx ¼ u0,x � zwb,xx þ z2’x,x þ z3�x,x

"yy ¼ v0,y � zwb,yy þ z2’y;y þ z3�y,y

"zz ¼ 0

�xy ¼ u0,y þ v0,x � 2zwb,xy þ z2ð’y,x þ ’x,yÞþ

z3ð�y,x þ �x,yÞ

�xz ¼ ws,x þ 2z’x þ 3z2�x

�yz ¼ ws,y þ 2z’y þ 3z2�y ð3Þ

where a comma (,) denotes partial derivatives.
The surface boundary conditions that the transverse

shear stresses vanish at the top and bottom faces are

equivalent to the requirement that the corresponding
strains be zero on these surfaces. Hence the resulting
displacement field, after satisfying these conditions, is
given by

uðx,y,zÞ ¼ u0ðx,yÞ � zwb,xðx,yÞ �
4z3

3h2
ws,xðx,yÞ

vðx,y,zÞ ¼ v0ðx,yÞ � zwb,yðx,yÞ �
4z3

3h2
ws,yðx,yÞ

wðx,y,zÞ ¼ wbðx,yÞ þ wsðx,yÞ ð4Þ

2.1. Finite element model

For the finite element discretization of the plate, rec-

tangular four-noded elements are used along with a
linear Lagrange interpolation function to model the
geometry of the plate. A C1 continuous shear flexible

element based on the higher-order theory is developed
using the Hermite interpolation functions. The compo-
nents of displacements can be expressed in terms of the

four unknowns, which can be written as

f
gT ¼ fu0,v0,wb,wsg ð5Þ

2.2. The pre-buckled problem

When the reference configuration is stress free, the
pre-buckled problem is solved for the linear elasticity

solution by minimizing the total potential energy in the
standard way to get

½ �K� f �
g ¼ fFg ð6Þ

for a reference load T0
i . The buckled state is obtained as

a perturbation of this pre-buckled state. The pre-buck-
led configuration is not stress free and hence the work

done by the nonlinear strain terms may not be

negligible. Therefore the perturbational total potential
energy expression is written as

�ðuiÞ ¼
1

2

Z
Cijkl"ij"kldvþ

1

2

Z
�0iju�,iu�,jdv�

Z
TiuidA

ð7Þ

The second integral in Eq. (7) represents the work done

by the pre-buckled stresses against the nonlinear strain
terms. The work done by �0ij due to the linear part of
strain is cancelled by the work done by T 0

i . In the

structural stability problems, Ti = 0, and the objective is
to find the lowest scalar multiplier, �, of �0ij and the
corresponding nontrivial displacement function ui such
that

�ðuiÞ¼
1

2

Z
Cijkl"ij"kldvþ

�

2

Z
�0iju�,iu�,jdv ð8Þ

is minimum. The stress field �0ij is called the ‘pre-

buckling stress state’, and the critical load (also called
the ‘bifurcation-buckling load’) is �minT

0
i .

3. Numerical results and discussion

In the present investigation, the pre-buckled problem
is solved first. The pre-buckled stress is computed and
this stress is used in the calculation of buckling load.

This is required since the stresses in the domain vary due
to presence of cutouts.

3.1. Boundary conditions

The following types of geometric boundary conditions
are considered in the analysis:

. u = 0 and v 6¼ 0 along loaded edges;

. u 6¼ 0 and v = 0 along unloaded edges;

. simply-supported (S): wb = ws = 0;

. clamped (C): wb = ws = wb,n = ws,n = 0;

where, n = x or y depending on the side of the plate.

3.2. Convergence study

The convergence study of a plate with a cutout is
made by considering two kinds of meshes, one being the
graded mesh and the other the equal mesh. It is found

that a 9 � 9 graded mesh gives a reasonably good result
when compared to a uniform mesh. This is because the
graded mesh efficiently captures the stresses near the

corners of the cutout.
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3.3. Validation of plate model with cutout

The results for an isotropic plate with a cutout are
compared with the results given in the [5]. Figure 1
shows the graph of buckling load for an isotropic plate

with varying hole–to–plate ratio, with all the edges
simply supported. A square plate with a square hole is
considered here. From the figure it can be observed that

the buckling load decreases continuously with the
increase in hole size. For both models, i.e. the present
analysis and the one given in [5], the results are very
close for smaller hole sizes. Discrepancy is observed for

larger hole sizes.

3.4. Interaction curves

This section deals with the study of interaction curves
for laminated composite plates under biaxial loading.

The material properties employed for this study are
taken from [7]. Figures 2 and 3 show the interaction

curves for a plate with a centrally located cutout for
plate of aspect ratio 2. Kx and Ky represent the buckling
parameters. Figure 2 shows the interaction curves for a

thick plate. From this figure it can be observed that there
is a sudden change in slope associated with the interac-
tion curves. The interaction curves for 	= 458 and 	 =
608 laminate intersect at one particular point. At this
point it can be said that these two laminations bear the
same amount of buckling load. The curves are almost
perpendicular to the y-axis for one portion, and almost

perpendicular to the x-axis for the other portions. This is
due to the fact that at these portions of the curves for a
small decrease in the value of Nx the strength of the

laminate to carry Ny increases rapidly. Figure 3 shows
the interaction curve for a thin plate. It can be observed
from the figure that the 	 = 458 and 	 = 608 laminates

Fig. 1. Non-dimensionalized buckling load versus hole–to–plate ratio.

Fig. 2. Interaction curves for biaxial in-plane compressive loads Nx and Ny with a/b = 2 and a/h = 10.
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give the maximum value of Nx + Ny and also that they
bear the same amount of buckling load for a certain

portion of the curve. For a cross-ply laminate, the
change in slope occurs at high value of Ny, whereas for
the 	 = 458 laminate the change in slope occurs at high

values of Nx. Figure 4 shows the interaction curves for a
thick composite plate with a centrally located cutout
under in-plane compressive and shear loading. The

interaction curves are symmetric about the x-axis for a
cross-ply laminate, whereas for other laminates these are
no longer symmetric. From the figures, it can be
observed that the value of Nx + Nxy is more for positive

shear as compared to negative shear. Also there is no
such point at which two or more curves correspond to
the same amount of buckling load.

4. Conclusions

1. The buckling load of a laminated plate decreases in
the presence of a cutout.

2. The interaction curves for Nx and Ny with cutout are

very much different than those for a laminate with-
out a cutout.

3. The interaction curves for biaxial loading are very

much different for thin and thick plates.
4. For biaxial compressive and shear loads the inter-

action curve is symmetric for a cross-ply laminate
and this behavior is not observed with other

laminates.

Fig. 4. Comparative study of stability envelope for biaxial in-plane compressive and shear loads Nx and Nxy with a/b = 1 and

a/h = 10.

Fig. 3. Interaction curves for biaxial in-plane compressive loads Nx and Ny with a/b = 2 and a/h = 100.
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