
On meshfree computations of shells

Sebastian Skatulla*, Carlo Sansour

School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia

Abstract

In this paper we combine a meshfree moving least method (MLS) formulation with a Nitsche-like method to enforce
essential boundary conditions. The formulation is based on a variational principle. The application in nonlinear

structural mechanics involves the Green strain tensor and a hyperelastic material law. Various examples of shell
deformations are presented which show the excellent performance of our proposed method.
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1. Introduction

One of the main reasons for the increase in research in
the so-called meshfree methods [1,2] is the fact that these

methods can deal especially well with problems which
are characterized by large deformations, changing
domain geometry, or necessitate higher order approx-

imation consistency.
However, meshfree methods still struggle with some

drawbacks and one of these is the fulfillment of essential

boundary conditions. The explicit enforcement of
essential boundary conditions, which is the common
procedure in FEM, is not suitable for meshfree methods.

This is rooted in the fact that the approximation func-
tions do not possess the Kronecker–Delta property.

Inspired by the so-called Nitsche method [3] we
describe a method which enforces the essential boundary

conditions of an elliptic PDE by a combination of a
modified variational principle and the penalty method.
With regard to shell structures, we investigate the gen-

eral applicability of the method as well as the
dependency of the solution accuracy on the chosen
penalty or stabilization parameter.

Our paper is structured as follows. After a brief
introduction to the moving least square method, a
Nitsche-like formulation is presented. The potential of

the proposed method and its applicability to non-linear
shell problems is revealed using two numerical simula-
tions of shells. Hereby two different hyperelastic
constitutive laws – the linear Saint-Venant-Kirchhoff

and a non-linear statistically based model of Arruda and
Boyce [4] are utilized.

2. Moving least square method

In the moving least square method (MLS) [5] an
approximation for a solution is constructed based on a

given set of particles. In the following we outline the
MLS method briefly. Let us consider any function u(x)
defined over the field �. A possible approximation for
u(x) is defined by a complete polynomial P(x) and its

non-constant coefficients a(x):

uhðxÞ ¼ P ðxÞ � a ðxÞ ð1Þ

where scalar products of vectors are denoted by a dot.
To each particle, a so-called weight function � with

compact support is attached. % defines the so-called
influence radius of �. The sum of all particles with
coordinates xI, that support the point x, constitute the

set �. With the help of this set a weighted least square fit
in the vicinity of a point x can be constructed according
to:

Jða ðxÞÞ :¼
X
I2�

½PðxIÞ � aðxÞ � uðx1Þ�2�
x� xI
%

� �
ð2Þ

The least square fit is weighted by a function � which, in
our case, is taken to be a cubic spline.

The unknown coefficients a(x) can be determined by
minimising the functional J with respect to a(x). Then
the substitution of the coefficients a(x) in Eq. (1) pro-

vides the approximation of u(x) as:
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uhðxÞ ¼ PðxÞ �M�1ðxÞ
X
I2�

PðxIÞ �
x� xI
%

� �
uI ð3Þ

where M(x) is the so-called moment matrix of the weight
function �:

M ðxÞ ¼
X
I¼�

PðxIÞ PðxIÞ �
x� xI
%

� �
ð4Þ

and uI are the so-called particle parameters. Due to the

continuity of the cubic splines the MLS approximation
possesses at least C2.

3. A Nitsche-like method

Let us consider a non-linear boundary value problem
on domain � with boundary @�. Dirichlet boundary

conditions are prescribed on @�D � @� and Neumann
boundary conditions are prescribed on @�N = @� \
@�D.

Now let F(u) = 1 + Grad u be the deformation
gradient and E(u) = FTF, the Green strain tensor.
Assume a hyperelastic material behaviour and let  (E)
define the stored energy function. Further, let Wext

define the external potential as follows;

WextðuÞ ¼ �
Z

�

f � u dV�
Z
@�N

t̂ � u dA ð5Þ

where f is the body force and t̂ is the external traction
vector prescribed on �N. We start from the following

variational statement:

�
Y
ðuÞ ¼

Z
�

S : �E dV�
Z

�

f � �u dV

�
Z
@�N

t̂ � �u dA ¼ 0 ð6Þ

where S is the second Piola–Kirchhoff stress tensor given
by:

SðuÞ ¼ @ ðEÞ
@E

ð7Þ

The double dot operator (:) denotes the scalar product
of tensors.

The above functional corresponds to the following
Euler–Lagrange field equation:

DivðFSÞ þ f ¼ 0; on �; FS� � t̂ ¼ 0; on @�N;

u ¼ û on @�D ð8Þ

where � defines the normal vector at the boundary.

To incorporate the essential boundary conditions in
the functional itself, that is to enforce these conditions as
a Euler–Lagrange equation, the functional (6) is mod-

ified in the following way:

�
Y
ðuÞ ¼

Z
�

S : �E dV�
Z
@�D

t � �u dA

�
Z
@�D

�t � ðu� ûÞ dAþ 

Z
@�D

ðu� ûÞ � �u dA

�
Z

�

f � �u dV�
Z
@�N

t̂ � �u dA ¼ 0 ð9Þ

It is crucial to note that the relation holds t = FS� .
That is, the variation is to be considered with respect to
FS� . The fourth term in Eq. (9) is a stabilization term

together with the stabilization parameter 
.

4. Numerical examples

In order to illustrate the impact of nonlinearity and
material on the applicability and accuracy of a Nitsche-
like formulation in shell analysis, two different hyper-

elastic material models, the linear Saint-Venant-
Kirchhoff and the statistically-based constitutive model
for rubber-like materials of Arruda and Boyce [4,6] have

been investigated.

4.1. Pinched cylinder with free edges

Our first example is a classical one, a cylindrical shell
with length L = 10.35m, radius R = 4.953m and

thickness h = 0.094m which is free at the edges. The
shell is subjected to two vertically opposite point loads
at its central points (points A). Assuming appropriate

symmetry boundary conditions, the cylinder is modelled
using one octant with 6 particles in longitudinal, 16 in
radial, and 3 in thickness direction. As constitutive law
the Saint-Venant-Kirchhoff model has been chosen. The

material parameters are Young’s modulus E = 1.05 �
104 N/m2 and Poisson’s ratio v = 0.3125. The dis-
placement diagram in Fig. 1 shows that the deformation

Fig. 1. Displacement diagram.
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process is split into two parts. The first part is bending

dominated which results in large deformations for small
loading parameters. The second part is characterized by
a steep slope. In Fig. 2, the final deformed configuration
is displayed. It should be noted that this example has

been considered by many authors using different shell
finite elements. In fact, our numerical results are in good
agreement with those reported in the literature.

4.2 Square sheet under pressure loading

Our second example, which utilizes a statistically
based model for rubber material, is a square sheet with a
length of L = 0.2m and thickness h = 0.0003m. The
constitutive parameters involve three constants: a shear

modulus CR = 1.56MPa, a bulk modulus k =
1000MPa and a parameter N = 8, which addresses the
limited extensibility of the macromolecular network

structure of the rubber material. The sheet is fixed on
two opposite edges and subjected to a constant pressure
load on its top surface. Due to symmetry conditions, one

half of the sheet is modelled using 11 particles in length,
3 in width and 3 in thickness directions. The deforma-
tion process is displayed in Fig. 3 and the deformed

configuration is depicted in Fig. 4.

5. Conclusion

In this paper we demonstrated the excellent perfor-
mance of a Nitsche-like formulation for a MLS

approximation method within shell analysis. Generally,
we could achieve excellent results already for low dis-
cretization levels. A linear calculation without the

stabilization term provided meaningful results for both

examples, but the stabilization term was needed in order
to perform a nonlinear calculation. This behaviour is
founded in the fact that essential boundary conditions

are only satisfied to a high accuracy if a penalty-like
stabilization is retained in the entire variational for-
mulation. This is especially true in the case of the Saint-

Venant-Kirchhoff model, which results, due to relatively
high values of the material constants, in a stiffer tangent
matrix. In such case the stabilization parameter must be

set to a high value. However, in general, the formulation
allows for low levels of penalty parameters without
sacrificing accuracy. This would not be possible in a
pure penalty formulation.
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