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Model-adaptive structural FEM computations for fluid—structure
interaction
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Abstract

A numerical approach to model thin-walled structures with anisotropic high-order finite hexahedral elements is
presented. With an appropriate variation of the polynomial degrees an efficient discretization of a structural dynamic
problem is found and then applied to a coupled fluid—structure interaction computation. Since a quasi-optimal choice of
the polynomial degrees for every element as well as for every local direction of each element is highly desirable, an
automatic p-adaptive method is presented and its effectivity is demonstrated with a numerical example.
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1. Introduction

For many fluid—structure interaction problems it is
desirable to avoid the use of dimensionally reduced
theories for the structural model. Typical examples are
structures with transitions from massive to thin-walled
structures, e.g. shells with stiffeners, bridges on supports,
rotor blades, etc. Here, finite elements based on dimen-
sionally reduced models would necessitate the
application of transition elements. Furthermore, at
those transitions it is difficult to decide where a reduced
stress state may be assumed and where an arbitrary
three-dimensional stress state can occur. In these situa-
tions, fully three-dimensional numerical structural
models are sought which are efficient for highly
demanding coupled computations.

In Section 2 our approach with high-order hexahedral
elements is described, which is utilized in Section 3 to
find an efficient and accurate structural dynamic finite
element model for a thin-walled structure by varying the
polynomial degrees in the different local directions
appropriately. The resulting numerical model is then
used for a coupled fluid structure interaction computa-
tion. An automatic element-wise p-adaptive method is
suggested in Section 4 and its efficiency is demonstrated
by considering a linear elastostatic example.
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2. Structural simulation using three-dimensional, high-
order finite elements

The problem usually arising when using a strictly
three-dimensional approach for thin-walled parts of
structures is that standard low-order finite elements are
very sensitive to large aspect ratios, and locking effects
are very likely to occur. Therefore, one would have to
use a large number of small elements having a width and
length in the same range as the thickness. In contrast,
high-order elements can cope with high aspect ratios
[1,3,11], provided that the polynomial degree is high
enough.

In this article the use of high-order hexahedral ele-
ments for thin-walled structures is described [3,4,5].
Curved structures (see Fig. 1) can be taken into account
by applying appropriate mapping techniques [4,6].

A very important feature in the context of high-order
elements is anisotropic Ansatz spaces. Using the
approach presented in [3] one can define different poly-
nomial degrees in the different local directions of the
hexahedral element. For a shell-like structure like that
presented in Fig. 1, we apply a high polynomial degree
for the in-plane direction, whereas in thickness direction
a lower polynomial degree can be used in order to
reduce the computational effort. In our implementation,
it is possible to define different polynomial degrees not
only for the different local directions, but also for the
different components of the displacement field.
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Fig. 2: System of plate with re-entrant corner (top left), mesh (top right), displacements of point A over time for varying ¢ (bottom left)

and p (bottom right).

Applying this approach, the ‘model error’ related to
every plate or shell theory turns into the discretization
error of the three-dimensional approximation. The main
advantage is that this error can be controlled by varying
the polynomial degree over the thickness in a sequence
of computations. It should be mentioned that this error
could not be controlled when using fixed kinematic
assumptions. An example for such an approach to error
control is shown in Section 3.

For the spatial discretization of the structural

problem, high-order elements are used, whereas the time
domain is discretized using the generalized-a-method,
which is second-order accurate and has favorable
numerical damping properties [7].

3. Error control for a thin-walled structure

As already mentioned in Section 2, the capability of
error control by using high-order elements will be
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Fig. 3. Displacement u, of point A over time (FSI).

demonstrated. Here, only the spatial error is considered,
assuming that the discretization in time is sufficiently
accurate.

For the system of a plate with a re-entrant corner
subjected to a constant face load (see Fig. 2, top left), the
error in the displacements for a structural dynamic,
geometric nonlinear computation using a linear elastic
material [8] is investigated.

The constant face load F,(¢) acting on the shaded
surface of the plate is applied suddenly at #,. The plate is
at rest and undeflected for ¢ < #,. Figure 2 (top right)
depicts the mesh consisting of 16 hexahedrons, refined in
order to resolve the singularity at the re-entrant corner.

In order to control the error, the following investi-
gation was carried out. The displacement in x-direction
of point A (see Fig. 2, top left) is considered over time.
In a first step the polynomial degree in in-plane direction
p is set to 5 and the degree in thickness direction ¢ is
varied in the range 1, ..., 4.

From Fig. 2 (bottom left) it is obvious that a poly-
nomial degree of ¢ = 1 does not yield a reliable result.
However, if the polynomial degree in thickness direction
is chosen to be ¢ > 2, one obtains an accurate
approximation.

In a second step, the polynomial degree in thickness
direction is set to ¢ = 2, and the polynomial degree in
the in-plane direction p is varied in the range 3, .. ., 7 (see
Fig. 2, bottom right).

It can be summarized, that p = 5 and ¢ = 2 yields a
sufficiently accurate and efficient discretization for this
problem.

This discretization is now used in a fluid—structure

interaction framework [9] connecting our p-version
structural code AdhoC and the block-structured finite
volume fluid code FASTEST3D applying the code
coupling software MpCCI [2] for interpolation between
the non-matching grids. A very low inflow velocity of
the fluid in x-direction was selected, resulting in a Rey-
nolds number of Re = 50 (laminar flow).

Fig. 3 shows the oscillations of the corner node A (see
system in Fig. 2) in x-direction. The amplitudes are large
in the beginning, but are then decreasing due to the
damping influence of the surrounding fluid.

4. An element-wise, automatic p-adaptive approach

In Section 3 there were only two free parameters in the
adaptive computation, namely the polynomial degree in
in-plane direction p and the polynomial degree over the
thickness ¢ of the whole computational model. In this
section, we suggest an element-wise adaptive strategy for
the computation of thin-walled structures with aniso-
tropic hexahedral elements for a linear elastostatic
problem and present some preliminary results, based on
the weak form of equilibrium B(u, v) = F(v). Future
work will extend this procedure to elastodynamic
problems.

In a first step we set the in-plane polynomial degree
for all elements to, for example p, = 4, and compute a
hierarchic, (almost) locking-free sequence where ¢ is
adapted automatically (k denotes the element). There-
fore, a hierarchic error indicator is Pphed which

P

(Prsqx) k)
compares the strain energy Bx(u/f™ w/li of each
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element & for two different approximations. To obtain a
reasonable error indicator, the approximation related to
degree ¢, is compared to the one based on ¢, + 2 with

(pr>qr)
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assuming that the saturation condition holds [10].
Having found the element-wise distribution of ¢, we
analogously adapt — in a second step — during an
adaptive hierarchic refinement the polynomial degree p;
in in-plane. Therefore, ¢, is kept constant and the strain
energy is compared element-wise for different levels of
D
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Those elements whose error is above a certain level are
increased in polynomial degree. The adaptive run is
stopped as soon as a prescribed tolerance is achieved or
a maximum number of runs is exceeded. For a global
error control we use the Richardson extrapolation [1].
Based on the adaptive approach described in this

e (2)
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section, the computation of a partially loaded, clamped
plate is carried out. The plate is loaded by a uniform
pressure acting on the grey shaded area, see Fig. 4 (top
left). In order to resolve boundary layers, the mesh is
refined towards the boundary. The resulting element
distribution of ¢, from the first step after 5 iterations,
and the corresponding distribution of p, from the sec-
ond step after 8 iterations are depicted in Fig. 4 (top
center and right).

It is evident that the adaptive algorithm detects those
elements which need to be refined in polynomial degree.
Elements which are close to the clamped boundary,
where the plate exhibits a three-dimensional stress state,
are assigned to a higher polynomial degree than those
elements which perform almost a pure rigid body
rotation.

To judge the efficiency of the adaptive approach we
consider the convergence of the error in energy norm of
adaptive and uniform refinement, plotted against the
number of degrees of freedom on a double logarithmic
scale, see Fig. 4 (bottom). Of course, best results are
obtained when both ¢, and p, are adaptively chosen.
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Fig. 4. Clamped plate (top left), adaptive selection of g, (top middle) and py (top right), error in energy norm against 70 for uniform

and adaptive computations (bottom).
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However, already the pure g-adaption (model adap-
tion) shows very good performance compared to
uniform refinement.

5. Conclusions

Our fully three-dimensional approach for structural
problems leads to very efficient finite element models by
means of appropriate variation of the polynomial degree
and p-adaptivity. These accurate but efficient models,
especially of thin-walled structures, are then well suited
e.g. for fluid-structure interaction computations as
shown in the article. A disadvantage of the presented
methods is their two-step character for thin-walled
structures (first: adaption over thickness, second: adap-
tion in-plane). Future work will consider this problem in
more detail.
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