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Abstract

This paper presents a simple embedded crack model, based on the cohesive crack approach, for the fracture of quasi-
brittle materials. A simple central force model is used to incorporate a cohesive softening curve (stress versus crack
opening). The model requires only the elastic constants and a mode I softening curve. The need for a tracking algorithm
is avoided by using a consistent procedure for the selection of the separated nodes. Numerical simulations of well-

known experiments are presented.
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1. Introduction

This work is based on the so-called strong dis-

continuity approach (SDA) to simulate the fracture of
quasi-brittle materials [1]. A discrete constitutive model
that relates the tractions and displacement jumps at the

discontinuity line is used. A crack adaptation procedure
avoids the need of the path enforcement (tracking).

2. The cohesive crack model

A simple generalization of the cohesive crack is used

that assumes that the traction vector t transmitted across
the crack faces is parallel to the crack displacement
vector w (central forces model). For monotonic loading

reads:

t ¼ f ~wj jð Þ
~w

w with ~w ¼ max wj jð Þ ð1Þ

where fð ~wj jÞ is the classical softening function for pure
opening mode and ~w is the historical maximum of the
magnitude of the crack displacement vector.

3. Finite element modelling

Figure 1a shows a finite element with an embedded
crack. The crack splits the element in two sub-domains

A+ and A�. n is the normal to one face and w is the
displacement jump across the crack. The approximated
displacement field can be written as:

uðxÞ ¼
X
�2A

N�ðxÞu� þ ½HðxÞ �NþðxÞ�w ð2Þ

where � is the element node index, N�(X) is the shape
function for node �, u� is the nodal displacement, and
H(x) is the Heaviside jump function across the crack

plane. The strain tensor is obtained from the displace-
ment field as a continuous part "c plus a Dirac’s �
function on the crack line. The continuous part, which
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determines the stress field on the element on both sides

of the crack, is given by:

" cðxÞ ¼ "aðxÞ � ½bþðxÞ � w�S ð3Þ

where "� and b+ are given by:

"aðxÞ ¼
X
�2A
½b�ðxÞ � u��S and bþðxÞ ¼

X
�2Aþ

b�ðxÞ

ð4Þ

with b� (x) = grad N�(x). "
� is the apparent strain

tensor computed from the nodal displacements. A con-
stant strain triangle with a strong discontinuity line

(crack), such as shown in Fig. 2, was developed. The
uniform stresses in the crack are given by:

t ¼ � � n and t ¼ A

hL
� � nþ ð5Þ

where A is the area of the element, L is the length of the
crack, h is the height of the triangle over the side

opposite to the solitary node, and n+ is the unit normal

to that side. The local equilibrium, Eq. (5), is used in
conjunction with the strain approximation, Eq. (3).

4. Numerical implementation

The vector w is handled as two internal degrees of
freedom, which are solved at the level of the crack within

the finite element. From Eq. (3) and elastic bulk material
behaviour, the stress tensor in the element is given by:

� ¼ E : "a � ðbþ � wÞS
h i

ð6Þ

where E is the tensor of elastic moduli. To solve the
crack displacement, the combination of Eqs (6), (5) and
(2) leads to:

fð ~wÞ
~w

1þ n � E � bþ
� �

� w ¼ ½E : "a� � n ð7Þ

Fig. 1. Finite element with a crack with uniform opening: (a) generic element with nodes and crack line; (b) displacement jump across

the crack line.

(a) (b)

Fig. 2. Constant stress triangle: (a) geometrical definitions; (b) potential crack paths satisfying both local and global equilibrium

(dashed lines).

(a) (b)
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This equation is solved for w using Newton Raphson’s

method given the nodal displacements (and so "a) once
the crack is formed, and thus n and b+ are also given.

The crack is introduced perpendicular to the direction

of the maximum principal stress, and n is computed as a
unit eigenvector of � . The solitary node and b+ are
determined by requiring the angle between n and b+ to

be the smallest possible (see Fig. 2).

The foregoing procedure is done at the element level

and is strictly local: no crack continuity is enforced or
crack exclusion zone defined. This may lead to locking
after a certain crack growth. To overcome this problem,

a certain amount of crack adaptability within each ele-
ment is allowed [2,3]. We allow the crack to adapt itself
to later variations in principal stress direction while its

opening is small. This crack adaptation is implemented

Fig. 3. (a) Geometry, forces and boundary conditions of the tests of Shi et al. [4]. (b) Deformed finite element mesh of the tests of Shi et

al. [4]. Distances in millimetres.

(a) (b)

Fig. 4. Experimental envelope and numerical prediction of the tests of Shi et al. [4]: load–displacement curves.
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easily by stating that while the equivalent crack opening
at any particular element is less than a threshold value,

the crack direction is recomputed at each step as if the
crack were freshly created. After this threshold value, no
further adaptation is allowed and the crack direction

becomes fixed.

5. Numerical analysis of the mixed mode loading tests

The described model has been introduced in two
commercial finite element codes by means of an user

subroutine for material. The tests reported by Shi et al.
[4] have been used as a benchmark for the numerical
model. Fig. 3a shows the double-edge notched specimen

subjected to direct tension, and Fig. 3b shows a
deformed mesh, with finite elements with the embedded
crack, used to simulate the fracture of the specimens.

Fig. 4 shows the experimental results and the numerical
prediction of the load P versus displacement curves. The
peak load, the initial part of the curve and descending

branch properly fit with experimental curve.
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