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Abstract

In this paper we present a new projection scheme for solving linear stochastic partial differential equations. The
solution process is approximated using a set of basis vectors spanning a preconditioned stochastic Krylov subspace. We
propose a strong Galerkin condition which ensures that the stochastic residual error is orthogonal to the approximating

subspace with probability one. We present numerical studies for a model problem in stochastic structural mechanics to
demonstrate that the proposed strong Galerkin projection scheme gives better results than the weak Galerkin scheme.
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1. Introduction

Linear stochastic partial differential equations (PDEs)

arise in a number of areas, including structural
mechanics, heat transfer and flow through porous
media. If the governing stochastic operator is elliptic and
self-adjoint, then discretization in space and the random

dimension leads to a linear random algebraic system of
equations of the form

Að�Þxð�Þ ¼ b ð1Þ

where A 2 R
n�n is a symmetric positive definite matrix

and � 2 R
p is a vector of random variables.

It is well known that a stochastic projection scheme

can be employed to solve Eq. (1). An orthogonal
Galerkin projection scheme extracts the approximate
solution x(�) 2 R

n from an arbitrary subspace K 2 R
n�m

by imposing m orthogonality constraints, where

dim(K) = m. Clearly, the choice of the search subspace
K is critical to the accuracy and efficiency of the
numerical scheme employed to solve Eq. (1).

A variety of subspaces have been proposed in the
literature for approximating the solution to Eq. (1) as
well as a wider class of stochastic operator problems.

Ghanem and Spanos [1] proposed an approach referred
to as the spectral stochastic finite element method
(SSFEM), which makes use of the subspace spanned by

multi-dimensional Hermite polynomials. More recently,
Xiu and Karniadakis [2] proposed a generalized poly-
nomial chaos (PC) approach where basis functions from

the Askey family of hypergeometric polynomials are
used. More recently, stochastic reduced basis methods
(SRBMs) were introduced that make use of basis vectors
spanning the stochastic Krylov subspace defined below

[3,4]:

KmðAð�Þ; bÞ ¼ spanfb;Að�Þb;Að�Þ2b; � � � ;Að�Þm�1bg
ð2Þ

Recent numerical studies suggest that SRBMs give

accuracy levels comparable or better than the SSFEM
approach at a significantly lower computational cost for
a class of linear stochastic PDEs [5]. This is primarily

due to the fact that when a suitably preconditioned
stochastic Krylov subspace is used to approximate the
solution process, highly accurate results can be obtained

using three–four basis vectors (i.e. by solving a small
reduced-order deterministic system of equations) even
for large coefficients of variation. In contrast, the
SSFEM approach involves the solution of a large-scale

deterministic system of equations with dimensionality
nP, where P is the number of basis functions used in the
PC expansion of the solution process. For a detailed

exposition of the theoretical foundations of SRBMs, the
reader is referred to [6].
The present paper focuses on the application of

Galerkin projection schemes in conjunction with the
stochastic Krylov subspace to solve linear stochastic
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PDEs. We introduce a strong form of the Galerkin
projection scheme in which the stochastic residual is

enforced to be orthogonal with respect to the approx-
imating subspace K with probability one. We present
numerical studies to demonstrate that the proposed

scheme gives better results than techniques based on the
standard weak Galerkin condition.

2. Stochastic projection schemes

Prior to the application of stochastic projection
schemes, the governing stochastic PDEs need to be

discretized in space and the random dimension. For
example, discretization along the random dimension can
be carried out using a random field discretization tech-

nique such as the Karhunen–Loéve expansion technique
or optimal linear estimation; see, for example, [1,7,8,9].
When a lognormal random field is used for modeling

uncertainty, it is convenient to use the Karhunen-Loéve
expansion in conjunction with the PC decomposition
technique [10]. Subsequently, spatial discretization of
the governing stochastic PDEs can be carried out using

standard techniques such as the finite element method.
Irrespective of the particular choice of the spatial and
random field discretization technique employed, the

coefficient matrix in equation (1) can be written in the
general form:

Að�Þ ¼
XP1

i¼0
Ai�ið�Þ ð3Þ

where Ai 2 R
n�n are deterministic matrices, �i(�) are

multi-dimensional Hermite polynomials in � and P1

depends on the order of the PC decomposition scheme
used to represent the input uncertainty.

A stochastic reduced basis approximation for the
solution of Eq. (1) can be written as:

x̂ð�Þ ¼ �0 0ð�Þ þ �1 1ð�Þ þ � � � þ �m mð�Þ ¼ �þ �
ð4Þ

where �(�) = { 0(�),  1(�), . . .,  m(�)} 2 R
n�(m+1) is a

set of basis vectors spanning the stochastic Krylov

subspace Km+1 defined in Eq. (2) and � = {�0, �1, . . .,
�m}

T 2 R
m+1 is a vector of undetermined coefficients. In

practice, a preconditioned stochastic Krylov subspace is
used to ensure accurate approximations using a few

basis vectors [4,5,6].

2.1. Weak Galerkin scheme

Substituting Eqs (3) and (4) into Eq. (1), we arrive at

the following stochastic residual error vector:

"ð�Þ ¼
XP1

i¼0
Ai�i

 !
�ð�Þ�� b ð5Þ

In the Galerkin scheme, � is computed by enforcing the
condition "(�) ?  i(�), i = 0, 1, 2, . . ., m. In the weak

Galerkin scheme we use the standard definition that two
random vectors x1(�) and x2(�) are orthogonal to each
other if xT1 ð�Þx2ð�Þ

� �
¼ 0, where <�> denotes the

expectation operator. We refer to the formulation based
on this definition of orthogonality as the weak Galerkin
scheme.
Application of the weak Galerkin scheme results in

the following reduced-order system of deterministic
linear algebraic equations:

XP1

i¼0
�i�ð�ÞTAi�ð�Þ

* +
� ¼ �ð�ÞTb

D E
ð6Þ

Equation (6) can be solved for �, which can be subse-
quently substituted into Eq. (4) to obtain the final
expression for the solution process.

2.2. Strong Galerkin scheme

We now derive a strong Galerkin scheme in which
orthogonality is imposed in a stricter sense. In other

words, we seek to compute the vector of undetermined
coefficients � such that the random functions "T

(�) i(�) = 0, 8i= 0, 1, 2, . . ., m for any realization of

the random vector �. This condition will ensure that the
stochastic residual error vector is orthogonal to the m
basis vectors with probability one. As shown earlier by

Nair and Keane [4], the strong orthogonality condition
will be satisfied only when � is computed by solving the
following reduced-order random algebraic system of
equations:

XP1

i¼0
�i�

Tð�ÞAi�ð�Þ
" #

� ¼ �Tð�Þb ð7Þ

As can be seen from the preceding equation, in order
to satisfy the strong Galerkin condition, we need to

model the undetermined coefficients �1, �2, . . ., �m as
functions of �, i.e. the stochastic reduced basis
approximation in Eq. (4) has to be rewritten as:

x̂ð�Þ ¼ �1ð�Þ 1ð�Þ þ �2ð�Þ 2ð�Þ þ � � � þ �mð�Þ mð�Þ ¼
�ð�Þ� ð�Þ ð8Þ

In general, it is not possible to solve (7) explicitly

unless further assumptions are made. Our idea is to relax
the strong Galerkin condition by employing a PC
decomposition of � as follows:
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�ð�Þ ¼
XP2

i¼0
�i�ið�Þ ð9Þ

where �i 2 R
m, i = 0, 1, 2, . . ., P2 are undetermined

vectors.
Further, since the matrix of stochastic basis vectors

�(�) are functions of random variables, they can be

represented using a PC expansion as:

�̂ð�Þ ¼
XP3

i¼0
�i�i

" #
ð10Þ

where �i 2 R
n�(m + 1), i = 1, 2, . . .,P3 are known

deterministic matrices.

Substituting Eqs (9) and (10) into (7) and rearranging
terms, we have:

XP3

i¼0

XP1

j¼0

XP3

k¼0

XP2

l¼0
�T

i Aj�k�i�j�k�l�l ¼
XP3

i¼0
�T

i b�i ð11Þ

In order to compute the vectors of undertermined

coefficients �l, l = 0, 1, 2, . . ., P2, the stochastic residual
error vector of the preceding equation is enforced to be
orthogonal with respect to the subspace of multi-

dimensional Hermite polynomials �e, e = 1, 2, . . ., P2 in
the weak sense, which gives:

XP3

i¼0

XP1

j¼0

XP3

k¼0

XP2

l¼0
�T

i Aj�k �i�j�k�l�e

� �" #
�l ¼

XP3

i¼0
�T

i b �i�eh i; e ¼ 1; 2; . . . ;P2 ð12Þ

Equation (12) is a system of (m+1) P2 � (m + 1) P2

deterministic linear algebraic equations which can be

solved for �i, i = 0, 1, . . ., P2. This solution can be
subsequently used in conjunction with Eqs.(8), (9) and
(10) to arrive at the final expression for the solution
process. The resulting expression for x̂ð�) can be readily

post-processed to compute the complete statistics of the
solution process.
It is worth noting here if we set P2 = 0 in Eq. (9) then

the strong Galerkin scheme reduces to the weak Galer-
kin scheme presented earlier. Hence, the strong Galerkin
scheme proposed here can be viewed as a generalization

of standard SRBMs proposed earlier in the literature
[3,4]. Also due to Theorem 2 of Nair and Keane [4], it
follows that the strong Galerkin scheme results in a

lower value of the A-norm of the error compared to the
weak scheme. As a consequence, the strong formulation
is guaranteed to be more accurate in the sense of this
error norm.

3. Numerical studies

We consider a thin square plate of unit length
clamped at one edge and subjected to uniform inplane

tension at the opposite edge; see [1,7] for details. The
Youngs modulus of the plate is modeled using both

Fig. 1. Percentage error in the standard deviation of the displacement using weak and strong Galerkin schemes (Gaussian model). The

numbers within brackets in the legend denote the number of basis vectors.
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Gaussian as well as lognormal random fields. For the

Gaussian case, random field discretization is carried out
using the Karhunen–Loève expansion scheme and four
terms are retained. For the lognormal case, we discretize

the random field using the approach presented in [7,10].
Four-noded quadrilateral elements are used for spatial
discretization. We compute the standard deviation of the

displacement at a point with maximum strain. The

results obtained using the projection schemes are com-

pared with those obtained using Monte-Carlo
simulations.
The percentage error in the standard deviation of the

displacement at the point considered for different stan-
dard deviations of the input random field (�) are
presented in Figs 1 and 2 for Gaussian and lognormal

models, respectively. Fig. 3 shows the convergence of the

Fig. 2. Percentage error in the standard deviation of the displacement using weak and strong Galerkin schemes (lognormal model).

The numbers within brackets in the legend denote the number of basis vectors.

Fig. 3. L2 norm of the stochastic residual error using the strong Galerkin scheme (Gaussian model).

S.K. Sachdeva et al. / Third MIT Conference on Computational Fluid and Solid Mechanics466



L2 norm of the residual error for the strong Galerkin

scheme as the number of basis vectors is increased for
different values of �. In the figures shown, note that the
number within brackets in the legends denotes the

number of basis vectors used. It can be observed that the
error norm converges rapidly when the number of basis
vectors is increased. Similar convergence trends are

observed when the lognormal model is used to represent
uncertainty.
It is evident from the results that the strong Galerkin

scheme gives better performance compared to the weak

Galerkin scheme for the same number of basis vectors.
For the problem considered it was found that the com-
putational cost of the strong formulation is only

marginally higher than the weak formulation.
Table 1 compares the results obtained using the weak

and strong Galerkin formulations with those computed

using the SSFEM approach employing PC expansions
[1]. The percentage errors (in standard deviation of
displacement) presented in the table were obtained for
the case when the Gaussian model is used with �= 0.2.

It can be seen that the strong Galerkin scheme gives
more accurate results than the other projection schemes.
Finally, it is also worth noting that the schemes pre-

sented here are orders of magnitude more efficient than
the SSFEM approach; see [5] for a detailed comparison
of the computational efficiency of the weak Galerkin

scheme and the SSFEM formulation.

4. Conclusions

We proposed a strong Galerkin projection scheme for
approximating the solution of linear random algebraic
equations arising from discretization of linear stochastic

partial differential equations. It is shown that the pro-
posed formulation is a generalization of stochastic
reduced basis methods based on the weak Galerkin

condition. Numerical studies are presented to demon-
strate that the strong Galerkin projection scheme gives
better results compared to the weak scheme for the same
number of basis vectors chosen from the stochastic

Krylov subspace. The strong condition is shown to work
well for both Gaussian as well as lognormal uncertainty
models. Finally, a selection of results are presented to

illustrate that the proposed formulation gives more
accurate results than the SSFEM approach, while
incurring significantly lower computational cost.
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Table 1

Comparison of the percentage error in standard deviation of

displacement computed using various projection schemes;

Gaussian uncertainty model with � = 0.2

Order Strong Galerkin

scheme

Weak Galerkin

scheme

SSFEM PC

projection scheme

1 3.459 10.423 10.474

2 0.790 1.877 1.976

3 0.296 0.543 0.543

4 0.197 0.247 0.247

5 0.148 0.197 0.197
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