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Abstract

In this investigation we discuss a thermodynamic consistent model for an assumed transversely isotropic ferroelectric

crystal. Due to the ferroelectric phase transition, that occurs at the so-called electric coercive field, we observe, within a
certain range of temperature and under applied oscillating electric fields, two leading hysteresis effects. These are the
polarization-electric-field and the strain-electric-field (butterfly) hysteresis loop. The main goal of this paper is to

capture these fundamental characteristics of such ceramics.
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1. Introduction

In the last years, a variety of microscopically and
thermodynamically motivated constitutive models for

the description of ferroelectric ceramics has been pro-
posed in the literature. A thermodynamically consistent
formulation of the electro-mechanical hysteresis can be
found in [1]. In these contributions concepts of plasticity

theory including yield surfaces and isotropic and kine-
matic hardening, based on the Helmholtz free energy,
are used. Based on these concepts several approaches for

thermodynamically motivated constitutive laws of fer-
roelectric ceramics have been developed, see e.g.
[2,3,4,5]. In this paper we present a thermodynamically

consistent model for transversely isotropic ferroelectrica
within the framework of the invariant theory, based on
the coordinate invariant formulations proposed in [6,7].

2. Basic equations

The basic kinematic variable is the linear strain tensor,

which is defined by the symmetric part of the displace-
ment gradient, i.e. "(x) := 1/2(gradu + gradT u). The
basic electric field variable, the electric field vector E, is

given by E(x) :¼ �grad 
, where 
 is the electric
potential. For the quasi-static case and neglected free

extrinsic charges the governing field equations are the

equation of momentum div� + �f = 0 and the Gauss
equation divD = 0. Here � represents the symmetric
Cauchy stress tensor, �f the given body force and D the

vector of electric displacements. The surface of the body
is decomposed in mechanical @B = @Bu [ @B� and
electrical parts @B = @B
 [ @BD, with @Bu \ @B� = 6 0
and @B
 \ @BD = 6 0. The boundary conditions are

defined by u = �u on @Bu for the displacements, �t = �n

on @B� for the surface tractions, 
 = �
 on @B
 for the
electric potential and ��� = Dn on @BD for the electric

charge.

3. Thermodynamic formulation

The basic assumption in the proposed model is the
additive split of the strains " and the vector of electric

displacements D into their reversible (*e) and remanent
parts (*r), i.e.

" ¼ "e þ "r and D ¼ De þ Pr ð1Þ

where Pr denotes the vector of remanent polarization.
Let us now assume the existence of a thermodynamic
potential H = H (", "r, E, Pr), which acts as an electric

enthalpy function. The observable variables are the total
strains " and the electric field E whereas the remanent
quantities describe the internal state of the material. The

second law of thermodynamics yields D= � : _" � D _E �
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_H � 0, if we neglect thermal effects, which leads to the
following inequality:

D ¼ ð�� @"HÞ : _"� ðDþ @EHÞ � _E� @"rH : _"r

�@PrH � _P
r � 0 ð2Þ

Since Eq. (2) has to be fulfilled for all possible thermo-
dynamic processes, we obtain the following constitutive
equations for the stresses and electric displacements:

� ¼ @"H and D ¼ �@EH ð3Þ

respectively. For the thermodynamic forces associated
to the remanent quantities we introduce the abbrevia-
tions ~� :¼ �@"rH and ~E :¼ �@PrH, which lead to the

reduced dissipation inequality:

D ¼ ~� : _"r þ ~E � _P
r � 0 ð4Þ

In order to describe the evolution of the remanent
variables the existence of a dissipation potential is

assumed, which is expressed as a continuous, convex
scalar-valued function of the flux variables _"r and _Pr.
Applying a Legendre–Fenchel transformation leads to a

corresponding potential, that can be formulated in terms
of the dual quantities. Therefore we introduce a
switching surface �(~�, ~E) � 0, formulated in terms of

the dual variables. Expecting that the principle of max-
imum remanent dissipation can be seen as a
generalization of the principle of maximum dissipation,

we construct the Lagrangian functional:

Lð ~�; ~E; �Þ ¼ �Dð ~�; ~EÞ þ ��ð ~�; ~EÞ ð5Þ

with the Lagrange multiplier �. The optimization con-
ditions @~�L = 0, @~EL = 0 and @�L = 0 lead to the

associated flow rules of the remanent variables:

_"r ¼ �@ ~��ð ~�; ~EÞ and _P
r ¼ �@ ~E�ð ~�; ~EÞ ð6Þ

and the loading/unloading conditions � � 0, �(~�, ~E) � 0

and ��(~�, ~E) = 0. It should be noted that the normality
rule is sufficient to satisfy the second law of
thermodynamics.

4. Invariant formulation and polynomial basis

The governing constitutive equations have to repre-
sent the material symmetries of the considered body.

Therefore the representation theorem of isotropic tensor
functions is used, in order to formulate the explicit
invariant constitutive equations. The values of the

enthalpy function have to be invariant under all trans-
formations Q of the material symmetry group Gti, i.e.

Hð"; "r;E;PrÞ ¼ HðQ"QT;Q"rQT;QE;QPrÞ 8Q 2 Gti
ð7Þ

this reflects the geometrical and physical symmetries of
the anisotropic solid. The main idea of the invariant
theory is the extension of the Gti-invariant functions, see
Eq. (7), to functions which are invariant under a larger
group of transformations. Since we want to focus on
transversely isotropic crystals, whose anisotropy class is

characterized only by one preferred direction, we
introduce the polar vector a as an additional argument.
Applying the so-called principle of isotropy of space, see

e.g. [8], leads to the following representation of the
enthalpy function:

Hð"; "r;E;Pr; aÞ ¼ HðQ"QT;Q"rQT;QE;QPr;QaÞ
8Q 2 Oð3Þ ð8Þ

which is the definition of an isotropic tensor function
with respect to the whole set of arguments. The invar-

iance group Gti of the electro-mechanically coupled solid
can be obtained by the so-called Principle of the
Superposition of Symmetries and we define Gti :¼ {Q 2
O(3),Qa= a}. For a detailed discussion of this topic see
e.g. [9]. In order to formulate the electric enthalpy
function we need a finite set of invariants, which builds
the so-called polynomial basis. In the following we are

not interested in the derivation of the whole basis and
refer to Spencer [10], Wang [11] and Liu [9], in the
context of electro-mechanical coupled systems we refer

to Schröder et al. [6] and the references therein. For the
finite set of vectors and tensors that is given by the
symmetric tensors ", "r, the vectors E, Pr and the pre-

ferred direction a, with kak = 1, the basic and mixed
invariants of interest are:

I1 :¼ trace½"� "r�; I2 :¼ trace½ð"� "rÞ2�;
I4 :¼ trace½ð"� "rÞða� aÞ�

I5 :¼ trace½ð"� "rÞ2ða� aÞ�; J1 :¼ trace½ðE� EÞ�;
J2 :¼ trace½ðE� aÞ� ð9Þ

K1 :¼ trace½ð"� "rÞðE� aÞ�; �NP :¼ Pr � a

Now the enthalpy function H is formulated in terms
of these invariants and it should be noted that poly-
nomial functions in elements of the polynomial basis are

invariant under all transformations Q 2 O(3).

5. Model problem

In this paper the underlying thermodynamic potential
is assumed to consist of five parts:

H ¼ H1ð"; "rÞ þH2ðEÞ þH3ð"; "r;E; �NPÞþ
H4ðE; �NPÞ þH5ð �NPÞ ð10Þ
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whereas the explicit expressions formulated in terms of
the polynomial basis are:

H1 ¼
1

2
�I21 þ �I2 þ �1I5 þ �2I

2
4 þ �3I1I4

H2 ¼ 
1J1 þ 
2J22

H3 ¼ ½�1I1J2 þ �2I4J2 þ �3K1�
1

Ps

�NP ¼: ! �NP

H4 ¼ �J2 �NP; H5 ¼ fð �NPÞ ð11Þ

The coefficients {�, �, �1, �2, �3} characterize the

mechanical, {
1, 
2} the dielectric and {�1, �2, �3} the
piezoelectric material properties within the invariant
formulation. In the linear piezoelectric range (neglecting

H4 and H5 and setting �NP equal to the maximum value
of polarization), this parameters can directly be identi-
fied with their coordinate-dependent representation, see

[6]. For ƒ( �NP) we choose:

fð �NPÞ ¼ 1

c
�NPArtanh

�NP

Ps

� �
þ 1

2
Ps ln 1�

�NP

Ps

� �2
 !" #

ð12Þ

where Ps is the maximum value of the remanent polar-
ization and the parameter c affects the slope of the

hysteresis-curves. For this specific model the explicit
forms of the stresses and electric displacements appear
with Eqs (3) as follows:

� ¼ ð�I1 þ �3I4Þ1þ 2�"þ �1½a� "aþ a"� a�
þð2�2I4 þ �3I1Þa� a

þ½�1J21þ �2J2a� aþ 1

2
�3ðE� aþ a� EÞ� 1

Ps

�NP

ð13Þ

D ¼ �2
1E� 2
2J2a� ½ð�1I1 þ �2I4Þaþ �3a"�
1

Ps

�NP þ Pr

Here Pr = �NPa is the remanent polarization with respect
to the polarization axis. With Eq. (13), the reduced
dissipation inequality Eq. (4) takes the form:

�ð@"rH1 þ @"rH3Þ : _"r � ð@ �NPH3 þ @ �NPH4 þ @ �NPH5Þ � _�N
P � 0

ð14Þ

According to the abbreviations given in Section 3, we
recast this reduced inequality in ~� : _"r + ~E � _�NP � 0.
Following McMeeking and Landis [4] this expression is

reduced to ~E � _�NP � 0 by using the following constitutive
assumption for the remanent strains:

"r ¼ "ra
P2
s

devðPr � PrÞ ð15Þ

where "ra characterizes the maximum achievable rema-
nent strain in direction of the polarization axis. This

quadratic relationship between the remanent polariza-
tion and strains is a commonly reasonable assumption,
see e.g. [12]. As a simple choice for the switching cri-

terion we specify:

� ¼ ~E2 � E2
c ¼ ðE� EBÞ2 � E2

c ¼ ðJ2 � EBÞ2 � E2
c � 0

ð16Þ

with EB := @ �NPH3 + @ �NPH5, E := �@ �NPH4 = J2 and
the coercive field strength Ec. For the loading case � =

0, Eq (16) leads to the so-called back electric field:

EB ¼ !þ f 0ð �NPÞ with f 0ð �NPÞ ¼ 1

c
Artanh

�NP

Ps

� �

ð17Þ

Resolving Eq. (17)1 with respect to �NP leads to a
formula for the remanent polarization, governed by the

strain and electric field quantities as the basic variables:

�NP ¼ Ps tanh½cðEB � !Þ� ¼: ~fðEB � !Þ ð18Þ

6. Numerical examples

In the following examples the material parameters for

the elastic stiffness tensor are chosen as C11 = 166;
C12 = 76.6; C13 = 77.5; C33 = 162 and C44 = 42.9 in
units of 103 N/(mm2). The components of the piezo-

electric tensor are set to e31 = �4.4; e33 = 18.6 and
e15 = 11.6 in units of 10�3 N/(Vmm). The parameters
for the dielectric tensor are set to k11 = 1260 � �0 = 1.12

and k33 = 1420 � �0 = 1.26 in units of 10�11 C/(Vmm),
where �0 = 8.854�10�15 C/(Vmm) is the permittivity of
free space. For the corresponding values of the max-
imum achievable polarization and the coercive field we

choose Ps = 26 � 10�8 C/(mm2) and Ec = 1000 V/(mm),
whereas the maximum remanent strain along the poling
direction, see Eq. (15), is set to "ra = 0.001. The calcu-

lated hysteresis loops for a simply supported bar under a
cyclic varying electric field, see Fig. 1, are given in Fig. 2.
In the next example we consider a square plate (20 �

20mm) with a centred hole (radius 3mm) and the
boundary conditions for the displacements and the time
varying electric potential given in Fig. 3(a). Figure 3(b)
illustrates the distribution of the electric potential at

time t = 3.0 s within the specimen and Fig. 3(c) depicts
the variation of the applied electric potential versus time.
The preferred direction a points in vertical direction and

the parameter c is set to 0.0002. During the cyclic
loading of the specimen, the polarization process is
initiated in regions where the switching criterion Eq. (16)

is identically fulfilled, i.e. � = 0. Figure 4 depicts the
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distribution of the remanent polarization for different
time steps, where the maximum achieved polarization in
preferred direction for t = 1.0 s is given in Fig. 4(a). The

maximum achieved polarization in opposite direction
for t = 3.0 s is illustrated in Fig. 4(b) and Fig. 4(c)
depicts the distribution of the remaining remanent

polarization in the absence of an electric field.

7. Conclusions

The main idea of the proposed model is an additive

split of the strain tensor and the vector of electric dis-
placements into reversible and remanent parts. In order
to simplify the model we have made a constitutive
assumption for the remanent strains, relating the rema-

nent strains directly to the remanent polarization and we
have neglected the topic of ferroelasticity and the effect
of mechanical depolarization. Based on these assump-

tions we have presented a thermodynamically consistent

phenomenological model for an assumed transversely
isotropic ferroelectric crystal, where the anisotropic
behavior of the electro-mechanical coupled material has

been captured by an invariant formulation of the con-
stitutive equations.
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values.
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