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Abstract

This paper presents the implementation of a numerical Karhunen–Loève expansion method in a finite elements code.
The procedure allows the discretization of a stochastic field in the form of a truncated series expansion including

deterministic functions and random variables.
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1. Introduction

One of the major difficulties associated with stochastic

analysis is the necessity to deal with random processes,
which become more and more necessary to account for
model uncertainties. A continuous random process

F({x}, !) is defined as an indexed set of random vari-
ables, the index belonging to some uncountable set (e.g.
the space coordinates for a random field). A natural way

to treat such mathematical object is to express them in
term of a limited set of random variables. For a random
field, it consists, for example, in associating a random
variable to nodes of a finite element (FE) model and

then use the elements’ shape functions to interpolate the
random field on the entire domain. However such an
approach can lead to a large number of random vari-

ables, which are numerically expensive to deal with,
either in Monte-Carlo simulation or in stochastic
analysis.

A less expensive approach is to expand the stochastic
field in a Fourier-type series [1]. Let us consider a ran-
dom field �({x}, !) of a given mean ��({x}) and a
covariance function:

C� xf g; yf gð Þ ¼ E

�
� xf g; !ð Þ � �� xf gð Þð Þ � yf g; !ð Þð

� �� yf gð ÞÞ
�
ð1Þ

The Karhunen–Loève expansion of the process consists
in:

� xf g; !ð Þ ¼ �� xf gð Þ þ
X1
n¼1

ffiffiffiffiffi
�n

p
&n !ð Þ
n xf gð Þ ð2Þ

Where �n and 
n({x}) are the eigenvalues and eigen-
functions of the covariance function, i.e. the solutions of

the following Fredholm integral equation:
Z
D

C� x1f g; x2f gð Þ
n x1f gð Þd x1f g ¼ �n
n x2f gð Þ ð3Þ

and &n(!) are random variables defined by:

&n !ð Þ ¼
1ffiffiffiffiffi
�n
p

Z
D

� xf g; !ð Þ
n sð Þd xf g ð4Þ

If the random field �({x}, !) is Gaussian then these

variables follow a normal probability density function
(PDF). Convergence study of truncated (2) series were
investigated by Huang et al. [2]. Such a decomposition is

the first step for stochastic finite elements procedures in
case of Gaussian random processes [3,4].
Analytical solutions of Eq. (3) are known for a small

number of covariance functions in one-dimensional
domains. In [1] Gahnem et al. presented a method to
solve numerically Eq. (3) (for any domain and feasible

function) that was very well-suited to finite elements
(FE) code, even if it could be used with any base of
function [5]. In this paper, we propose an
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implementation in the FE code CAST3M [6] and test it
on one-dimensional analytical solution cases.

2. Theory

A numerical solution of Eq. (3) can be attained
through a Galerkin-type procedure [1]. Let {hi({x})} be a
complete base of function in the Hilbert space H of

continuous functions. Each eigenfunction 
k ({x}) may
be represented as:


k xf gð Þ ¼
X1
i¼1

d
ðkÞ
i hi xf gð Þ ð5Þ

The difference "k between the two members of Fredholm

equation (3) resulting from the truncature after the Nth

term for the kth eigenfunction is:

"k x1f gð Þ ¼
XN
i¼1

d
ðkÞ
i

Z
D

C� x1f g; x2f gð Þhi x2f gð Þd x2f g
�

��khi x1f gð Þ
�
ð6Þ

Requiring the error to be orthogonal to the approx-
imating functions for a k given yields to:

"k x1f gð Þ; hj x1f gð Þ
� �

¼ 0 j ¼ 1; ::: ;N ð7Þ

Thus:

XN
i¼1

d
ðkÞ
i

Z
D

Z
D

C� x1f g; x2f gð Þhi x2f gð Þd x2f g

0
@

1
Ahj x1f gð Þ

2
4

d x1f g � �k
Z
D

hi x1f gð Þhj x1f gð Þd x1f g
�
¼ 0 ð8Þ

This equation allows us to compute the kth eigenvalue
and eigenfunction. We can obtain a more friendly form
by using two matrices [C] and [B]:

Cij ¼
Z
D

Z
D

C� x1f g; x2f gð Þhi x2f gð Þd x2f g

0
@

1
Ahj x1f gð Þd x1f g

ð9Þ

Bij ¼
Z
D

hi xf gð Þhj xf gð Þd xf g ð10Þ

This leads to the following matricial form of the equa-
tion for the kth mode:

C½ � dðkÞ
n o

� �k B½ � dðkÞ
n o

¼ 0 ð11Þ

or equivalently

B½ � dðkÞ
n o

� 1

�k
C½ � dðkÞ
n o

¼ 0 ð12Þ

At this point the problem becomes very similar to a
classical dynamic problem in FEM. Given a system
having a stiffness matrix [K] and a mass matrix [M], the

kth pulsations and modal vectors are found by solving
the equation:

K½ � qðkÞ
n o

� !2
k M½ � qðkÞ

n o
¼ 0 ð13Þ

Therefore, the only new piece of code to be added is

the computation of the matrices [C] and [B]. The reason
of inverting the Eq. (11) is that most FE software give
the smallest eigenpulsations first, whereas in our

expansion we are looking for the greatest eingenvalues.
Then to use the built-in procedure one has to make the
following correspondences:

Data:
Matrix [K] is replaced by matrix [B],
Matrix [M] is replaced by matrix [C],
No boundary condition.

Results:
The kth returned pulsation !k gives the eigenvalue �k
according to the relation

�k ¼
1

!2
k

ð14Þ

The eigenvector {q(k)} returned by the code gives us
the eigenfunction 
k({x}) using the n shape functions
Ni({x}) (n being the number of nodes in the model)


k xf gð Þ ¼
Xn
i¼1

Ni xf gð ÞqðkÞi ð15Þ

3. Computation of matrices [C] and [B] using finite

elements

Using the shape functions Ni({x}) as base functions in
expression (9) leads us to:

Cij ¼
Z
D

Z
D

C x1f g; x2f gð ÞNi x2f gð Þd x2f g
� �

Nj x1f gð Þd x1f g

ð16Þ

Let us consider the first level of integration in
expression (9):

fi x1f gð Þ ¼
Z
D

C x1f g; x2f gð ÞNi x2f gð Þd x2f g ð17Þ

The shape function having a compact support, the

integration domain may be reduced to the elements
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surrounding the node i. Denoting Di such a domain and
Dek the element k domain leads to:

fi x1f gð Þ ¼
X
k12Di

Z
Dek1

C x1f g; x2f gð ÞNi x2f gð Þd x2f g

0
B@

1
CA

ð18Þ

Then, using Gauss integration:

fi x1f gð Þ ¼
X
k12Di

XnGauss

ig¼1
C x1f g; x

k1
ig

n o� �
Ni x

k1
ig

n o� �

wig det Jk1½ �ð Þ ð19Þ

We can follow the same scheme for the variable {x1}:

Cij ¼
Z
Dj

fi x1f gð ÞNj x1f gð Þd x1f g ð20Þ

Cij ¼
X
k22Dj

XnGauss

jg¼1
f x

k2
jg

n o� �
Nj x

k2
jg

n o� �
wjg det Jk2½ �ð Þ ð21Þ

Then, substituting f by its expression (19):

Cij ¼
X
k22Dj

XnGauss

jg¼1

X
k12Di

XnGauss

ig¼1
C x

k2
jg

n o
; x

k1
ig

n o� �
Ni x

k1
ig

n o� �"

wig det Jk1½ �ð Þ�Nj x
k2
jg

n o� �
wjg det Jk2½ �ð Þ ð22Þ

Where:
Di is the set of element surrounding the node i,

Ni is the shape function associated with the node i,
nGauss is the number of Gauss points in each element,

{xk1ig } is the vector of the coordinates of the igth Gauss
point of the element k1,

wig is the weight of the igth Gauss point,
[Jk1

] is the jacobian matrix of the element k1.
On the other hand, the computation of the matrix [B]

was more classical: expression (10) is nothing else than
the mass matrix of the system for a unitary density and
one degree of freedom per node.

4. Implementation

The previous scheme was implemented in the finite
element software CAST3M. Only a few procedures had

to be added to the code in order to compute both
matrices [C] and [B].
The main difference between these procedure and

most classical FE procedures is the impossibility to use
elementary matrices for [C], due to the double level of
integration in (9). Usually in FEM, integrations are

performed in each element and then summed to give the
global integration on the whole domain. It was not
possible here because a global integral had to be com-
puted first (expression (19)) before integrating again

(expression (21)). However, thanks to the compact
support of shape functions, these integrations can be
limited to the elements surrounding both inspected

nodes (the set noted Di in (18)). This raised also prac-
tical concerns for internal data manipulation: a
superelement including every node of the model had to

be defined in order to store [C].

Fig. 1. Relative difference between numerical and theoretical solutions for the test beam with respect to the mesh density.
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5. Test case

Analytical solution of the spectral decomposition of
an exponential and triangular covariance are know in

the one-dimensional case. We set up the following one-
dimensional exponential covariance function along a
three-dimensional beam with a length equal to one

meshed with linear elements:

C� x1f g; x2f gð Þ ¼ exp � x11 � x21j jð Þ ð23Þ

Where x11 and x21 are the first coordinates of vectors
{x1} and {x2} respectively.

The numerical results showed a good convergence to
the analytical ones for increasing mesh density (Fig. 1).
For the highest density tested, numerical eigenvalues

(Table 1) and eigenfunctions (Fig. 2) were similar to
those expected by theory. Noteworthy eigenvalues are
inversely proportional to the cross-section area of the

beam (multiplying area by ten leads to eigenvalues
divided by ten), not surprisingly because we have the

square of the Jacobian determinant in [C] but not in [B].
So eigenvalues corresponding to the one-dimensional
case could be found either by using a unity cross-section
area or by multiplying the results by its value.

6. Extension to tri-dimensional covariance functions

For the sake of the comparison with one-dimensional
analytical solution we had to use the one-dimensional

covariance function (23). However, this method is
immediately usable for any feasible tri-dimensional
covariance function and domain, leading to the expan-

sion of any stationary second-order random field as long
as the computational power allows it. Such a study is
beyond the scope of this paper.

7. Conclusions

The method presented in this paper achieves the
Karhunen–Loève expansion of a covariance function
through the use of a finite element model. Such an

expansion allows the discretization of random fields on
the form of a set of deterministic functions (represented
by their nodal values) associated with random variables,

leading to either Monte-Carlo simulation or stochastic
finite elements procedures.
The main limitations of this method do not come

from the numerical implementation, but from the

expansion itself. First the truncated Karhunen–Loève
expansion may converge slowly to its exact values for
some covariance functions (like the triangular ones).

Second this expansion is only useful for Gaussian

Fig. 2. Numerical and theoretical modes (left and right respectively).

Table 1

Numerical and analytical eigenvalues for the test beam with 50

elements

Numerical Analytical Relative difference

1st Mode 7.388324E-01 7.388110E-01 0.0029%

2nd Mode 1.380217E-01 1.380040E-01 0.0128%

3rd Mode 4.510630E-02 4.508800E-02 0.0406%

4th Mode 2.134663E-02 2.132900E-02 0.0827%

5th Mode 1.229677E-02 1.227900E-02 0.1448%

6th Mode 7.963228E-03 7.945371E-03 0.2248%
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random processes (else the distribution of random
variables defined in (4) is unknown).
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