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Abstract

In the majority of research works in the stochastic finite element analysis, the main concern is put on the uncertainty

in elastic modulus. This is due mainly to the importance of this parameter in stochastic response of structures but due
also partly to the difficulties in introducing other material or geometrical uncertain parameters in the formulation. In
this paper, a formulation to determine the statistical behavior due to multiple uncertain material parameters in in-plane

and plate structures is given. To demonstrate the behavior of the proposed formulation, some examples are chosen and
the results are compared with those obtained by means of classical Monte-Carlo simulation.
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1. Introduction

One of the features of structural materials is the

intrinsic uncertainty in its mechanical properties which
is spatially distributed over the system domain with a
certain probabilistic characteristic. The uncertainties can
be modeled as random process, which is defined as a

parametered family of random variables: {X(x):x 2 �},
where � denotes the system domain. If the concern is on
the uncertainties of multiple mechanical constants, such

as {X(x),Y(x),. . .: x 2 �}, not only the statistical prop-
erties of respective random variables but also the cross-
correlation between these variables have to be defined.

Though many branches of concern exist in the literature,
it is not too much to say that the studies in the area of
stochastic finite element (FE) analysis have main con-

cern on the effect of uncertain elastic modulus on the
structural response variability [1,2]. Even though some
indirect ways are suggested to include the Poisson ratio
in the stochastic FE analysis [3], it is fairly recent work

[4] where the sole effect of this parameter on the response
variability is explicitly examined. In this paper, adopting
the scheme of [4], a formulation to evaluate the response

statistics due to multiple uncertain material parameters,
in the context of weighted integral method, is presented.

2. Constitutive matrix with uncertainty

The constitutive relation is a function of material and

geometrical parameters such as elastic modulus, Poisson
ratio and thickness:

D",D� ¼ F E,�ð Þ;Db,Ds ¼ F E,�,t,�ð Þ ð1Þ

where D", D� denote constitutive matrices for plane

strain and plane stress state, and Db, Ds stand for those
of bending and shear part in plate finite element. E, v, t
and � are elastic modulus, Poisson ratio, thickness of

plate and shear correction factor, respectively. In this
study, two material parameters, E and v, are taken as
uncertain parameters.

Following the development similar to [4], the con-
stitutive matrix can be written as follows irrespective of
the kinds of finite element under consideration:

D fE,f�ð Þ ¼ Ddet þ �d
X1
k¼0

f kð ÞD kð Þ ð2Þ

where �d are self-explanatory specific deterministic con-

stants and the deterministic constitutive matrix is
designated as Ddet. The k-th modified random field and
sub-constitutive matrices are designated as f (k), D(k). In

deriving Eq. (2), mathematical expressions in Eq. (3) are
employed:
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E xð Þ ¼ Eo 1þ fE xð Þð Þ, � xð Þ ¼ �o 1þ f� xð Þð Þ, x 2 �

ð3Þ

where Eo, vo are the mean values of the elastic modulus
and Poisson ratio, and fE(x), fv(x) are zero-mean,

homogeneous random fields with standard deviation of
�EE, �vv respectively. The symbol � denotes the struc-
tural domain to which the position vector x belongs.

3. Element stiffness with stochasticity

With the direct substitution of Eq. (2) into the equa-
tion for element stiffness matrix, k =

R
V BTDB dV, the

stochastic element stiffness matrix is written as:

k ¼ kdet þ
X1
k¼0

�k kð Þ :¼ �kð Þ

¼
Z

V

BTDdetB dVþ �d
X1
k¼0

Z
V

f kð Þ xð ÞBTD kð ÞB dV

ð4Þ

where kdet is deterministic stiffness and �k is a devia-
toric stiffness consisting of infinite sub-stochastic

element stiffness.

3.1. Random variables in stochastic stiffness matrix

If we follow the precedent research work [1], where
the strain-displacement matrix B is decomposed into a
sum of constant matrix Bi multiplied by an independent

polynomial pi, B ¼ �
Np

i¼1Bipi, the deviatoric stiffness �k

is given as a function of random variable:

�k ¼ �k
kð Þ
ij X

kð Þ
ij , i,j ¼ 1,2, � � � ,Np and k ¼ 0,1, � � � ,1 ð5Þ

with the brief notations of �k
kð Þ
ij ¼ �dBT

i D
kð ÞBj and

X
kð Þ
ij ¼

R
V f kð Þ xð Þpipj dV. As a consequence, not only the

element stiffness matrix but also the global stiffness

matrix and displacement vector are also given as func-
tions of random variables.

3.2. Number of random variables

As can be deduced from the element stochastic stiff-
ness matrix, (4) and (5), the total number of random
variable is evaluated as:

NRV ¼
Xm
k¼0

N
kð Þ
RV ¼ mþ 1ð Þ 1

2
Np Np þ 1
� �

ð6Þ

if we truncate the expansion order in Eq. (5) to m.

4. Response statistics

Noting that m-kinds of random variables are involved
in the stochastic stiffness matrix, the first order Taylor’s
expression for displacement vector can be written as

follows:

U � Uo �
Xm
k¼0

XNe

e¼1

XN kð Þ
RV

RV¼1
X

e kð Þ
RV � X

e kð Þo
RV

� �
K�1o

@K

@X
e kð Þ
RV

" #

E

Uo

8<
:

9=
;

¼ Uo ��RV þ
Xm
k¼1

�� kð Þ ð7Þ

where sub- and superscript ‘o’, subscript ‘E’, and Ne

denote mean value, evaluation at the mean and total
number of finite element, respectively.

4.1. The first two moments

With Eq. (7), the mean and covariance of displace-

ment are obtained as:

E U½ � ¼ Uo ð8Þ
Cov U,U½ � ¼ E �U�UT

� �
ð9Þ

With �U = U � E[U] from Eq. (7), and after some
manipulations, the covariance of response can be rear-
ranged as:

Cov U,U½ � ¼
XNe

ei,ej¼1
K�1o Feiej,EK

�T
o �

Xm
p¼1

Xm
q¼1

E �� pð Þ ��T
qð Þ

h i

ð10Þ

4.2. Force-equivalent covariance matrix

The term, Feiej,E, named as ‘force-equivalent covar-

iance matrix’, is given as an expectation on the force-
equivalent terms as:

Feiej,E ¼ E �keiUoU
T
o �kej

� �
ð11Þ

Substituting the deviatoric stiffness in Eq. (4), Feiej,E

becomes:

Feiej,E ¼ E �k
0ð Þ
ei þ �k

1ð Þ
ei þ � � � þ �k

mð Þ
ei

� �
UoU

T
o

h

�k
0ð Þ
ej þ �k

1ð Þ
ej þ � � � þ �k

mð Þ
ej

� �
� ¼

Z
Vei

Z
Vej

Xm
k¼0

Xm
l¼0

E f kð Þ xeið Þf lð Þ xej
� �h i

~k
kð Þ
ei UoU

T
o
~k

lð Þ
ej

n o
dVejVei ð12Þ

where ~k
kð Þ
ei ¼ BT

eiD
kð Þ
ei Bei. The expectation on the sto-

chastic field function in Eq. (12) can be replaced with

R
klð Þ
�� �ii; �ij; �jj
� �

by means of general formula for random
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variables in multiplied form [4]. Here, it has to be
mentioned that the transformation holds only for

Gaussian variables, therefore it is implied in this study
that the random material parameters follow the Gaus-
sian distribution.

5. Numerical examples

The auto- and cross-correlation functions are
assumed as follows:

Rpp �ð Þ ¼ �2pp exp � �1j j þ �2j j
d

	 

; p ¼ E or �

R�E �ð Þ ¼ ��ER�� �ð Þ¼
or
��EREE �ð Þ; �1:0 � ��E � 1:0

ð13Þ

where d is a correlation distance and the cross-factor
correlation (CCF) is designated as �vE.

5.1. Classical Monte-Carlo simulation

To validate the performance of the proposed for-
mulation, classical Monte-Carlo simulation (MCS) is
also employed. To generate two-variate 2D random

fields, the statistical preconditioning scheme is adopted
[5]. As mentioned in [5], the discretization for random
field must be sufficiently fine to reproduce the random

field corresponding to white noise (i.e. when d is small).
This drawback leads the analysis results to show some
plateau region in coefficient of variation (COV) of

response for small value of d, as shown in Figs. 1 and 4.

5.2. In-plane structures

A square in-plane structure with a constant traction in
y-direction is analyzed. The material constants are:
Eo = 2.1 � 106, vo = 0.2. The COV of displacement is

found at the upper right corner.
In case of plane stress state, the correlation effects of

multiple uncertain parameters are relatively small

excepting in x-displacement for large correlation dis-
tance d. Figure 1 shows the COV of displacement as a
function of d for plane strain state. The maximum COV
in x direction is generally increased when compared with

the case of sole uncertain parameter. In case of y-dis-
placement, it depends on the value of �vE: increase when
positive and vice versa. The degree of influence is eval-

uated to reach about 9%. As seen in Fig. 1, the results of
proposed weighted integral (WI) formulation are in
good agreement with those of classical MCS. The COV

of response as a function of (COVE, COVv) for d =
1000.0 is given in Fig. 2, which shows degree of influence
of each uncertain parameter.

5.3. Plate structures

Square plates with simple support and clamped sup-
port are analyzed. A unit distributed load is applied on

the top surface in the downward direction. The varia-
bility of center-point displacement is investigated (Fig.
3). The material constants are: mean Young’s modulus

Eo = 10.29 � 103, thickness t = 1.0 and mean Poisson
ratio vo = 0.20.
Generally, the positive correlation increases the

variability and vice versa: Fig. 4. The degree of influence

Fig. 1. COV of displacement in in-plane structure (plane strain) for no correlation (CCF = 0.0), perfect negative and positive

correlation (CCF = �1.0 and 1.0).
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Fig. 3. Geometry of example plate: simple support.

Fig. 4. COV of center displacement of simply supported plate as a function of correlation distance d: note: CCF = correlation

coefficient.

Fig. 2. COV of displacement in in-plane structure for each (COVE, COVv), (CCF = 1.0 and correlation distance d = 1000.0).
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is about 8% and 7% for simple and clamped support
conditions. It has to be noted that these are specific

values for the Poisson ratio of 0.2. In case of no corre-
lation (CCF = 0.0), the COV of response is the same as
the coefficient of variation of uncertain parameters.

Though the variability obtained by the proposed for-
mulation shows consistent under-estimation to that of
classical MCS, the results of proposed formulation show

good agreement with those of classical MCS.

6. Conclusions

In this study, a formulation in the stochastic finite
element analysis to determine the statistical behavior of

in-plane and plate structures due to the multiple uncer-
tain material parameters is proposed. The constitutive
matrix, which is a function of uncertain elastic modulus

and Poisson ratio, is decomposed into infinite sub-
matrices and is truncated up to 4-th terms for compu-
tational purpose. The effects of correlated uncertain

parameters are examined quantitatively and qualita-
tively, and it is also demonstrated that the results of the

proposed scheme are in good agreement with those of
classical Monte-Carlo simulation.

References

[1] Choi CK, Noh HC. Stochastic finite element analysis of

plate structures by weighted integral method. Struc Eng

and Mech 1996;4(6):703–715.

[2] Deodatis G, Graham-Brady L, Micaletti R. A hierarchy

of upper bounds on the response of stochastic systems

with large variation of their properties: random variable

case. Prob Eng Mech 2003;18:349–363.

[3] Graham LL, Deodatis G. Response and eigenvalue ana-

lysis of stochastic finite element systems with multiple

correlated material and geometric properties. Prob Eng

Mech 2001;16:11–29.

[4] Noh H-C. A formulation for stochastic finite element

analysis of plate structures with uncertain Poisson’s ratio.

Computer Meth in App Mech and Eng 2004;193(45–

47):4857–4873.

[5] Yamazaki F, Shinozuka M. Simulation of stochastic fields

by statistical preconditioning. J of Eng Mech, ASCE

1990;116(2):268–287.

H.C. Noh / Third MIT Conference on Computational Fluid and Solid Mechanics410




