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Abstract

We develop reduced-order models for microelectromechanical systems (MEMS) devices using the Galerkin proce-

dure employing the mode shapes of their structural elements. The result is a finite set of nonlinear coupled ordinary-
differential equations. These equations, in turn, are used to calculate the equilibrium configurations as well as the
dynamics of the devices. We apply this methodology to MEMS made of microbeams and rectangular and circular

microplates. We validate these models with available experimental results and numerical solutions of the full governing
partial-differential equations and associated boundary conditions.
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1. Introduction

The dynamics of microelectromechanical systems

(MEMS) are represented by partial-differential equa-
tions (PDEs) and boundary conditions. Three
approaches are used to reduce them to ordinary-differ-
ential equations (ODEs) in time:

. Idealization of the device flexible structural elements
as rigid bodies.

. Discretization using finite-element methods (FEM),

boundary-element methods (BEM), or finite-differ-
ence methods (FDM).

. Construction of reduced-order models (ROM).

The first and second approaches, while lying at
opposite extremes of complexity, are currently the most
widely used. The pressure for better designs, less trial-

and-error in the design process, and better device per-
formance demand better models than idealized rigid
bodies. Numerous researchers compared the pull-in
voltage of electrostatically actuated cantilever [1] and

clamped-clamped [2] microbeams obtained by solving
the distributed-parameter system to those obtained
using a spring-mass model and found that the spring-

mass model under-predicts the pull-in voltage.
Although FEM/BEM and FDM simulations are

adequate for the analysis of the static deflections

(equilibrium positions) of MEMS devices, they are
inadequate for dynamic simulations because they
require the time integration of thousands of second-

order ODEs (one for each degree of freedom in the
model). This is a very expensive process, making system-
level simulation, device optimization, interactive design,
and evolutionary design almost impossible. As a result,

reduced-order modeling of MEMS is gaining attention
as a way to balance the need for enough fidelity in the
model against the numerical efficiency necessary to make

the model of practical use in MEMS design.
One approach to reduced-order modeling is to elim-

inate the spatial dependence in the PDEs using the

Galerkin method. The displacement is expressed as a
linear combination of the mode-shapes (and associated
eigenfunctions) 
i(x,y,z) of the MEMS structural ele-

ments in the form:

wðx,y,z,tÞ ¼
X1
i¼1

uiðtÞ
iðx,y,zÞ ð1Þ

where ui(t) is the generalized coordinate associated with

basis eigenfunction 
i(x,y,z). Substituting Eq. (1) into
the PDEs and requiring the residue to be orthogonal to
every eigen function, we obtain an infinite set of non-

linear second-order ODEs in time in terms of the
generalized coordinates ui(t). These equations are trun-
cated to a finite set.

Next, we present reduced-order models for electrically
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actuated microbeams and rectangular and circular
microplates using the linear undamped mode shapes of

the flat structure as a basis set in the Galerkin procedure.
We also present results showing the efficiency and
accuracy of these models.

2. Microbeams

We consider a clamped-clamped microbeam subject

to viscous damping with a coefficient ĉ per unit length
and actuated by an electric load �(t̂) = VDC + VAC

cos(�t̂), where VDC is the DC voltage and VAC and � are
the amplitude and frequency of the AC voltage. The

nondimensional equation of motion and the boundary
conditions that govern the transverse deflection of the
microbeam are written as [3,4]
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where x, t, and w, are the nondimensional position, time,

and transverse deflection, respectively. They are related
to the dimensional variables (denoted by hats) by:

w ¼ ŵ

d
, x ¼ x̂

‘
, t ¼ t̂

T
ð4Þ

where d is the capacitor gap width, ‘ is the length of the

beam, and T ¼
ffiffiffiffiffiffiffiffi
�A‘4

EI

q
. The parameters appearing in Eq.

(5) are:

�1 ¼ 6
d

h


 �2

, �2 ¼
6�‘4

Eh3d3
, c ¼ ĉ‘4

EIT
, N ¼ N̂‘2

EI
ð5Þ

where A and I are the area and moment of inertia of the

cross-section, � is the material density, E is Young’s
modulus, h is the microbeam thickness, � is the dielectric
constant of the gap medium, and N̂ is an applied tensile

axial force.
We generate a ROM [5,6] by discretizing Eqs. (2) and

(3) into a finite-degree-of-freedom system consisting of

ordinary-differential equations in time. We use the linear
undamped mode shapes of the straight microbeam
(VDC = 0) as basis functions in the Galerkin procedure.

To this end, we express the deflection as:

wðx,tÞ ¼
XM
i¼1

uiðtÞ
iðxÞ ð6Þ

We multiply Eq. (2) by (1 � w)2, substitute Eq. (6)

into the resulting equation, use the linear undamped
mode shape equation [5,6] to eliminate 
i�n , multiply by


n(x), integrate the outcome from x = 0 to 1, and
obtain:
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for n ¼ 1,2, . . . , M ð7Þ

where the prime denotes differentiation with respect to

space x, the overdot denotes differentiation with respect
to time t, !i, is the ith natural frequency, and the func-
tional �ijn is defined by:

�ijn ¼
Z 1

0


i
j
ndx

Eq. (7) represent a discretized system of M coupled
nonlinear ODEs describing the dynamic behavior of an

electrically actuated microbeam. Using three or more
modes in Eq. (7) was shown [5,6] to give good con-
vergence for the stable equilibria.
When the microbeam is deflected, the linear mode

shapes and natural frequencies change correspondingly.
We use the ROM to calculate the fundamental natural
frequency of a resonant microsensor as the voltage is

increased. For a given voltage �, we substitute the static
solution (fixed points of Eq. (7)) into the Jacobian
matrix of Eq. (7) and find the corresponding eigenva-

lues. Then by taking the square root of the magnitudes
of the individual eigenvalues, we obtain the natural
frequencies of the microbeam. In Fig. 1 we compare the

normalized fundamental natural frequency calculated
using the ROM employing five symmetric modes in the
discretization (solid line) with results obtained by sol-
ving the eigenvalue problem of the distributed-

parameter system (triangles) using a numerical method
[3,4] and the experimental results (circles) obtained by
Tilmans and Legtenberg [7] for a resonator with the

specifications l= 210�m, h= 1.5�m, b= 100�m, d=
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1.18�m, E = 166 GPa, and N̂ = 0.0009 Newtons.
There is an excellent agreement among the results. The

ROM shows robustness in predicting the natural fre-
quency over the whole range of operation even as the
microbeam approaches its stability limit (pull-in) where

the frequency approaches zero.
To demonstrate the ROM ability to predict the

dynamic behavior of microbeam-based MEMS, we cal-

culate the pull-in time of a pressure sensor. We use the
first five symmetric modes in Eq. (7) and integrate the
resulting five ODEs in time for the ui(t). We find the
pull-in time by monitoring the beam response over time

for a sudden rise in the displacement, at that point we
report the time as the pull-in time. Figure 2 shows the
evolution of u1, the dominant generalized coordinate,

with the nondimensional time obtained by integrating
Eq. (7). The nondimensional pull-in time is approxi-
mately t = 3.4, where a sudden rise in u1 occurs.

3. Rectangular microplates

We model a microplate fully clamped above a parallel
electrode using the dynamic analog of the von Kármán

equations to account for moderately large deflections

[8,9,10]. In nondimensional form, the governing equa-
tions are:
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Fig. 1. A comparison of the normalized fundamental natural frequency calculated using the ROM and employing five symmetric

modes in the discretization (solid line) with results obtained by Nayfeh and co-workers [3,4] (triangles) and the experimental results

(circles) obtained by Tilmans and Legtenberg [7].
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where u(x,y,t), �(x,y,t), and w(x,y,t) are the displace-
ments in the x, y, and z directions, Nij is the applied force
on the i-edge in the j-direction, and � is Poisson’s ratio.

The nondimensional variables used in Eqs. (8)–(10) are
[11]:

u ¼ aû

2d2
, � ¼ a�̂

2d2
, w ¼ ŵ

d
, Nij ¼

N̂ij

Eh
, x ¼ 2x̂

a
� 1,

y ¼ 2ŷ

b
� 1, t ¼ 2ht̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� �2Þ�a4=E
p ð11Þ

This choice of x and y shifts the center of the plate to
the point (x = 0, y = 0). The parameters appearing in
Eqs. (8)–(10) are:

� ¼ b

a
, �0 ¼

a

h
, a1 ¼

d

h
, �2 ¼

3

8

1� �2
Eh3d3

�a4 ð12Þ

Zhao et al. [11] solved the linear undamped eigenvalue
problem using the hierarchical finite-element method

(HFEM) to obtain the microplate eigenfunctions 
i(x, y)
and write the transverse displacement field as:

wðx,y,tÞ ¼
XM
i¼1

qiðtÞ
iðx,yÞ ð13Þ

Substituting Eq. (13) into Eqs. (8) and (9) and con-
sidering the associated in-plane boundary conditions

yields a set of boundary-value problems for u and �.
Using the HFEM, Zhao et al. [11] solved for u and � in
terms of qi(t); that is:

u ¼ uðx,y,qiðtÞÞ and � ¼ �ðx,y,qiðtÞÞ ð14Þ

Multiplying both sides of Eq. (10) by (1 � w)2, sub-
stituting Eqs. (13) and (14) into the outcome, and
applying the Galerkin procedure, we obtain a set of

nonlinearly coupled ODEs, which is the ROM for the
microplate.
Francais and Dufour [12] measured the center

deflection of a fully clamped square microplate under
various electrostatic actuations. In Fig. 3, we compare
the deflection wmax at the center of the plate calculated

using the ROM with the experimental results of

Fig. 2. Evolution of u1 with the nondimensional time demonstrating the onset of pull-in.
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Francais and Dufour. The ROM shows good agreement

and robustness, being able to predict deflections up to
the pull-in voltage. The dots correspond to unstable
equilibrium solutions and the solid line corresponds to
stable equilibrium solutions calculated using the ROM.

4. Circular microplates

We consider a circular plate with radius R fully

clamped above a parallel electrode. The nondimensional
equations governing the axisymmetric deflection w(r,t)
of the plate can be written as [13]:
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where H4 is the polar biharmonic operator, � is the
residual stress, F(r,t) is an additional axisymmetric

pressure, and �(r,t) is the stress function. The non-
dimensional variables and parameters appearing in Eqs.
(15) and (16) are given by:
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ĉffiffiffiffiffiffiffiffiffiffiffi
�h5D

p , and � ¼ 12ð1� �2Þh2
R2

and D ¼ Eh2

12ð1��2Þ is the plate flexural rigidity. The
boundary conditions are:

wð1,tÞ ¼ 0,
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To generate the ROM, we let:

wðr,tÞ ¼
XM
m¼1


mðtÞ
mðrÞ ð19Þ

�ðr,tÞ ¼
XM
m;n¼1


mðtÞ
nðtÞ mnðrÞ ð20Þ

where 
m (r) is the mth axisymmetric linear undamped
mode shape of the flat plate (� = 0) and the � mn (r) are
unknown axisymmetric functions to be determined in

the course of the analysis. Substituting Eqs. (19) and
(20) into Eqs. (15), (16), and (18), and following the
Galerkin procedure, we obtain:
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Fig. 3. Comparison of wmax calculated using the ROM (solid and dotted curves) with the experimental results (+) of Francais and

Dufour [12].
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where the functional �ijn is defined as:
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Vogl and Nayfeh [13] validated the ROM with
experimental data. Osterberg [14] measured the pull-in

voltage �pi for multiple radii R of clamped circular

microplates made of silicon with the specifications h �
3�m and d � 1�m. Osterberg developed a statistics-

based model to approximate �pi and solved for the
optimal statistical coefficients by fitting his model to the
experimental data. Vogl and Nayfeh [13] fit the physics-

based model, Eqs. (21) and (22), to the experimental
data by solving for the values of E, �, �, d, and h that
minimize the objective function:

W ¼
X14
i¼1

�model
i ðE,�,�,d,hÞ � �expi

�i


 �2

ð23Þ

where the �i, �
model
i , and �expi are, respectively, the

experimental standard deviations, the model pull-in
values, and the experimental pull-in values for the 14

different experimental radii. The objective function W is
a weighted sum of the square of the deviations between
the model and experimental values. The local minimum

of W is d = 1.014�m, h = 3.01�m, E = 150.6 GPa,
� = 0.0436, and �̂ = 7.82 MPa, which seems to be the
global minimum. The pull-in voltages from this opti-
mum model are displayed in Fig. 4 along with the

experimental data. Standard deviation bars for the
experimental data are also shown in the figure.

5. Summary and conclusions

We used the mode shapes of the structural elements of
MEMS devices as basis sets in the Galerkin procedure
to develop ROMs for microbeams and rectangular

and circular microplates and validated them with

Fig. 4. Comparison of the pull-in voltage variation with plate radius obtained using the ROM and the experimental results of

Osterberg [14].
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experimental and full numerical solutions. Our
approach to the construction of ROMs has proven to be

robust and accurate over the whole operation range of
the device, including pull-in. These ROMs need to be
extended to a broader class of devices, employing more

complex structural elements.
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