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Abstract

The use of the Advanced Censored Closure, recently proposed by the authors for predicting the extreme response of

linear structures vibrating under random processes, is extended to oscillators with non-linear damping driven by
stationary white noise. The proposed approach requires the preventive knowledge of mean upcrossing rate and spectral
bandwidth of the response, which are estimated through the stochastic averaging method. A numerical application to

an oscillator with a linear-plus-cubic damping is presented, and the results are compared with those of the classical
Poisson approach, and of Monte Carlo simulations.
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1. Introduction

The stochastic analysis of structural and mechanical
systems subjected to dynamic actions of a random nat-
ure has become very popular in the last decades, since in
a number of engineering situations deterministic

approaches are quite unsatisfactory.
When the excitation is modelled as a Gaussian pro-

cess, and the system exhibits a linear behaviour, the

response is Gaussian too. In this case, then, the knowl-
edge of mean value and standard deviation fully defines
the response from a probabilistic point of view. In many

cases, however, due to a non-linear behaviour of the
system, the response may be significantly non-Gaussian,
and higher-order statistics are required.

Unfortunately, the mere probabilistic characterization
of the response is not sufficient in a reliability analysis.
In fact, under the assumption that a vibrating system
fails as soon as its response first exits a given safe

domain, the statistics of the first passage time have to be
estimated. This is recognized to be one of the most
complicated problems in stochastic mechanics, and

exact solutions have not been derived, even in the sim-
plest case of SDoF linear oscillators under stationary

white noise; hence, a number of approximations are
available in the literature.

Among these, the most popular one is the so-called
‘Poisson approach’ (e.g. [1]), in which the response
upcrossings of a deterministic threshold are assumed to
be independent events. This classical approach, how-

ever, proved to be too conservative when the response is
narrowband (e.g. because the system is lightly damped),
and/or when the threshold is not high enough with

respect to the standard deviation of the response. In
these situations, in fact, consecutive response upcross-
ings are far from being independent, as they tend to

occur in clumps, whose mean size depends on the
spectral bandwidth of the response. The latter, then, has
to be somehow accounted for in order to improve the

results.
The Gaussian censored closure technique proposed by

Senthilnathan and Lutes [2] reveals the same bounds,
since the clumping tendency of the upcrossings is

completely neglected. In order to overcome this short-
coming, Muscolino and Palmeri [3,4] recently
introduced an expedient ‘censorship factor’, which can

be related to the spectral bandwidth of the response; the
use of the Gumbel model as guest probability density
function (PDF) for the extreme response, instead of the

Gaussian one, further improves the results. Effective-
ness, accuracy and computational advantages of this
formulation have been proved in the reliability analysis
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of linear structures, even in the most general case of
MDoF systems subjected to coloured noises [5].

The aim of this paper is to extend the use of the latter
technique, termed advanced censored closure (ACC), to
SDoF oscillators featuring a non-linear damping, and

subjected to a stationary white noise. To the best
knowledge of the authors, this is the first time in which a
censored closure is consistently applied to non-linear

systems, given that in the pioneering work of Suzuki and
Minai [6] the response of hysteretic oscillators is
assumed to be Gaussian.

2. Proposed approach

Let us considerer the random vibration of a SDoF
oscillator with a non-linear damping, driven by a zero-

mean, stationary white noise Wt of power spectral
density (PSD) S0:

m €Xt þ c Xt; _Xt

� �
_Xt þ kXt ¼Wt ð1Þ

where Xt is the random process which describes the
motion; m and k are the inertia and the elastic stiffness,
respectively; c(x, _x) is the even function that defines the
damping law; and where the over-dot denotes the deri-

vate with respect to the time t.
Usually, the non-dimensional time s = !0t, with

!0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, is introduced in order to pose the equation

of motion in a reduced form. In so doing, one obtains:

X00s þ 2 �0 h Xs;X
0
s

� �
X0s þ Xs ¼ g �Ws ð2Þ

where the prime denotes the derivative with respect to s;
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �!0 S0

p �
k defines the relative strength of the

excitation; �Ws is a non-dimensional, zero-mean, sta-
tionary white noise of unitary intensity, i.e. with auto-
correlation function that is a Dirac delta function,

EhXrXsi = �(js� rj), Eh�i being the expectation opera-
tor; and where, finally, � 0 and h(x,x0) account for the
linear and the non-linear portions of the damping law,

respectively:

� 0 ¼
cð0; 0Þ
2m!0

; h Xs,X
0
s

� �
¼

c Xs,!0 X
0
s

� �
cð0; 0Þ ð3Þ

2.1. Response statistics

From a probabilistic point of view, the state variables
Xs and X 0s in stationary conditions are fully character-

ized by the knowledge of the joint PDF pX,X0 (x,x
0). In a

number of engineering situations, when the exact solu-
tion is not available, this function can be effectively
evaluated via the stochastic averaging (SA) method [7,8],

in which the motion is assumed to be pseudo-harmonic,
that is:

Xs ¼ As cos sþ�sð Þ; X 0s ¼ �As sin sþ�sð Þ ð4Þ

amplitude As and phase �s constituting a 2-variate
random process ‘slowly’ varying with respect to the non-

dimensional time s. The method enables to estimate the
effective damping ratio, in a harmonic balance sense,
through the expression:

� eff að Þ ¼
1

2� a

Z 2�

0

2 � 0 h a cos#;�a sin#ð Þ a sin2 # d#

ð5Þ

The knowledge of the latter quantity is sufficient to
evaluate the Rayleigh-like approximate PDF of the
amplitude:

pAðaÞ ¼
1

N

a

g
exp � 4

g 2

Z
a � effðaÞda

� �
ð6Þ

where N is just a normalization constant, that is:Rþ1
0 pAðaÞ da ¼ 1. Accordingly [8], the joint PDF of Xs

and X0s is given by:

pX,X0 x,x
0ð Þ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x02
p pA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x02

p� �
ð7Þ

which allows evaluating the mean upcrossing rate of a

deterministic threshold b:

�þX ðbÞ ¼
Z þ1
0

x0 pX,X0 b,x
0ð Þdx0 ð8Þ

Finally, the one-sided PSD of the stationary response is
given by [8]:

GXð!Þ ¼
2

�!0

Z þ1
0

� effðaÞ a2

!=!0ð Þ2�1
h i2

þ 2 � effðaÞ!=!0½ �2

� pA að Þ da ð9Þ

which allows measuring its spectral bandwidth through
the non-dimensional parameter 0 < qX < 1:

qX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

� 2
1;X

� 0;X � 2;X

s
; � i;X ¼

Z þ1
0

!i GXð!Þ d!

ð10Þ

2.2. Reliability analysis

Generally speaking, the reliability function R(n)
associated with the response process Xs can be defined as
the probability that the first passage time T1 of a given
safe domain does not occur prior to n cycles of the

response, i.e. R(n) = Probh!0T1 � ni. In many
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engineering applications, the safe domain is bounded by
a so-called (double) D-barrier of level b > 0, so that Xs

remains in the safe domain until �b � Xs � b. One can
see that in this case the reliability function is identical to
the evolutionary cumulative distribution function

(CDF) FY (b; n) of the extreme response process Yn =
max {jXsj, 0 � s � n}, that is:

RðnÞ � Prob Yn � bh i ¼ FYðb; nÞ ð11Þ

By neglecting the spectral bandwidth of the response,
the latter can be evaluated through the classical Poisson
approach (e.g. [1]). When the system is assumed to start

from the stationary conditions, one obtains:

FYðb; nÞ ¼ F Xj jðbÞ exp � 2 �þX ðbÞ n
!0

� �
ð12Þ

where �þX (b) is the mean upcrossing rate of Eq.(8), and
FjXj(b) is the CDF of the absolute value of the response,
given by:

F Xj jðbÞ ¼ 2

Z b

0

pXðxÞdx; pXðxÞ ¼
Z þ1
�1

pX;X0 ðx; x0Þdx0

ð13Þ

Finally, the mean value �Y (n) and the standard devia-
tion �Y (n) of the non-stationary process Yn are:

�YðnÞ ¼ E Ynh i ¼
Z þ1
0

b
@FYðb; nÞ

@b
db;

�YðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Yn � �YðnÞ½ �2
D Er

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ1
0

b� �YðnÞ½ �2 @FYðb; nÞ
@b

db

s
ð14Þ

As an alternative, the evolutionary second-order
statistics of Yn can be evaluated by means of the

advanced censored closure (ACC) method [6], in which
the differential equations governing the first two statis-
tical moments mi,Y (n) = EhYi

ni (with i = 1, 2), and the

associated initial values, are derived in the form:

m0i;YðnÞ ¼ 2 i	ðnÞ
Z þ1
0

�þX ðbÞ bi�1 �Yðb; nÞdb ;

mi;Yð0Þ ¼ 2

Z þ1
0

xi pXðxÞdx ð15Þ

where �Y (b;n) is the guest CDF of the extreme response
after n cycles, for which the Gumbel model is used:

�Yðb; nÞ ¼ exp � exp � b� 
YðnÞ
�YðnÞ

� �	 

ð16Þ

the parameters 
Y(n) = �Y(n) � 0.5772�Y (n) and

�Y (n) = 0.7797�Y (n) accounting for position and

spread, respectively; and where the non-dimensional
censorship factor 	(n) has to be estimated through:

	ðnÞ ¼ E �ðYnÞh i ¼
Z þ1
0

�ðbÞ
@ F Xj jðbÞ�Yðb; nÞ
� �

@b
db

ð17Þ

�(b) being the semi-empirical correction term proposed
by Vanmarcke [9] in the reliability analysis of stationary

Gaussian processes:

�ðbÞ ¼
1� exp �1:253 q1:2X b=�X

� �
1� exp �0:5 b=�Xð Þ2

h i ð18Þ

in which the parameter qX is given by Eq. (10).

The effective step-by-step technique presented in
detail in [6] can be used to numerically solve Eq. (15).
Finally, the evolutionary mean value and the standard

deviation of Yn are:

�YðnÞ ¼ m1;YðnÞ; �YðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2;YðnÞ � �YðnÞ2

q
ð19Þ

3. Numerical application

The approximate formulations dealt with in the pre-
vious section, namely the classical Poisson approach and

the proposed ACC technique, are applied to a SDoF
oscillator with a linear-plus-cubic damping.
The damping law in Eq. (2) is defined by � 0 = 0.003

and h(x,x0) = 1 + 0.15x02; two strengths of excitation
are selected: g = 1, and g = 6.

In a first stage, the SA method is used to evaluate the
approximate statistics of the stationary response. In Fig.
1 the effective damping ratio, � eff(a) = 0.003 +

0.0003375a2, is depicted: it is worth noting that this is a

Fig. 1. Effective damping ratio.
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monotonic increasing function of the amplitude only. In
Fig. 2(a) and Fig. 2(b), respectively, the PDF of the

amplitude (Eq. (6)) and the mean upcrossing rate of the
response (Eq. (8)) given by the SA method are compared
with those given by the well-known stochastic linear-

ization (SL) method [10], which works under the
assumption that the response process is Gaussian. One
can see that, even for the lower value of g, the dis-

crepancy is not negligible; as a consequence, the
deviation from the Gaussianity needs to be taken into
account in the reliability analysis. In Fig. 2(c) the PSD of
the responses (Eq. (9)) are shown. It is worth noting that

the higher excitation not only raises the energy content
over all the frequencies, but also increases the spectral
bandwidth: i.e. for g = 1 the response process is nar-

rowband, while for g = 6 it becomes broadband.
In a second stage, the evolutionary mean value and

standard deviation of the extreme response are eval-

uated. Figure 3 tells that, independently of the spectral

bandwidth of the response, the mean value of the pro-
posed ACC (solid lines) is in good agreement with the

result of 50 Monte Carlo simulations (MCS) circles,
while the standard deviation is overestimated. This is
mainly due to the discrepancy between the right-hand

tail of the Gumbel distribution used in the analysis, and
that of the actual distribution of the extreme response.
On the contrary, the classical Poisson approach (dashed

lines) proves to be accurate in the case of the higher
excitation only (Fig. 3(b)), i.e. when the response process
is broadband, while it is too conservative in the other
case (Fig. 3(a)).
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