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Abstract

In this paper, a spectrally formulated wavelet finite element is developed and is used to study coupled wave pro-

pagation in composite beam. The formulation uses Daubechies wavelet approximation in time to reduce the governing
PDE to a set of ODEs. Similar to conventional FFT-based Spectral Finite Element (FSFE) formulations, these
transformed ODEs are solved using finite element (FE) techniques by deriving exact interpolation functions in the

transformed domain to obtain the exact dynamic stiffness matrix. The use of the compactly supported Daubechies
wavelet basis circumvents several drawbacks of the FSFE due to the required assumption of periodicity, particularly for
time domain analysis. In the Wavelet-based Spectral Finite Element (WSFE) formulation, a constraint on the time

sampling rate is placed to avoid spurious dispersion being introduced in the analysis. Numerical examples are presented
to study wave propagation with the formulated element and emphasize the advantages of WSFE formulation over
FSFE for wave propagation analysis of finite length structure. Numerical experiments are also performed to study the
dispersion of waves and show the presence of spurious dispersions. Simultaneous existence of various propagating

modes are graphically captured using modulated sinusoidal pulse excitation.
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1. Introduction

Wavelets have several properties that are encouraging
their use for numerical solutions of partial differential

equations (PDEs). The orthogonal, compactly sup-
ported wavelet basis of Daubechies [1] can provide
accurate and stable representation of differential

operations and also have the inherent advantage of
multi-resolution analysis over the traditional methods.

Wave propagation problems deal with loading that

have very high frequency content and FE formulation
for such problems require large system size to capture all
the higher modes. These problems are usually solved in
frequency domain using Fourier methods, which can in

principle achieve high accuracy in numerical differ-
entiation. One such method is the FFT-based Spectral
Finite Element Method (FSFEM) proposed by Doyle

[2]. In FSFEM, first the governing PDEs are trans-
formed to ODEs in spatial dimension using FFT in time.
These ODEs are then usually solved exactly, which are

used as interpolating functions for FSFE formulation.

This results in exact mass distribution and hence, in
absence of any discontinuity, one element is sufficient to
handle 1-D structure of any length and this reduces the

system size substantially.
The main drawback of the Fourier-based spectral

approach is that it cannot handle waveguides of short

lengths. This is because, short length forces multiple
reflections at smaller time scales. Since Fourier trans-
forms are associated with a finite time window (that

depends on time sampling rate), shorter lengths of
waveguide do not allow the response to die down within
the chosen time window, irrespective of the type of
damping used in modeling. This forces the response to

wrap around, that is the remaining part of the response
beyond the chosen time window, will start appearing
first and this totally distorts the response. It is in such

cases, compactly supported wavelets, which have loca-
lized basis functions can be efficiently used for
waveguides of short lengths.

The present Wavelet-based Spectral Finite Element
Method (WSFEM) follows an approach very similar to
FSFEM, except that Daubechies scaling functions are
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used for approximation in time for reduction of PDEs to
ODEs. WSFE can be formulated assuming periodic

boundary condition and for this case the results are
expected to be similar to those obtained using FSFEM
[3]. However, an extrapolation technique proposed by

Amaratunga and Williams [4] can be used for adapting
wavelet in a finite domain and imposition of initial
values. The latter approach can remove the problem

associated with ‘wrap around’ in FSFEM and thus
result in smaller time window for the same problem.
Further, as a consequence, WSFEM can be used for
finite length undamped structures where FSFEM does

not work well.
In composite beams, due to high ratios of elastic

moduli, the effect of neglecting higher order modes like

shear and lateral contraction is non-negligible. Thus
higher order beam model is essential for accurate ana-
lysis, particularly for beams with strong asymmetry. In

this paper, WSFE is formulated for a coupled composite
beam with axial, bending, shear and contractional
degree of freedom. FSFE for such composite beam has

been formulated by Mahapatra and Gopalakrishnan [5].
Though FSFEM encounters several problems in time

domain wave propagation analysis, it is extensively used
to study the various frequency dependent characteristics

of waves i.e the spectrum and dispersion relations can be
obtained directly from analysis in the transformed
ODEs. In this paper, a correspondence is established

between the transformed ODEs in periodic WSFEM
with those obtained in FSFEM and the formulated
WSFE is directly used for such frequency domain ana-

lysis of coupled wave propagation in laminated
composite beam.
The paper is organized as follows. In Section 2, the

details of WSFE for composite beam is presented. Fol-

lowing this a section on numerical examples is provided
to study spectrum relation and wave propagation due
broad band and modulated excitations. In all the cases

comparison is provided with corresponding FSFEM
results. The paper ends with some important
conclusions.

2. Formulation

The first step in the formulation of WSFE is the
reduction of the governing differential wave equations to
ODEs using Daubechies scaling functions for approx-

imation in time. The details of Daubechies orthogonal
compactly supported wavelets are given in [1]. The
governing equations for composite beam derived in [5]

are
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u(x, t), w(x, t), �(x, t) and  (x, t) are the axial, trans-

verse, shear and contractional displacements
respectively. The stiffness and inertia constants in Eq.
(1)–(4) has the usual meaning and the details are given in
[5].

Let � = 0, 1, . . ., n � 1 be the sampling points, then

t ¼ �t� ð5Þ

where, �t is the time interval between two sampling

points. The function u(x, t) can be approximated by
scaling function ’(�) at an arbitrary scale as

uðx; tÞ ¼ uðx; �Þ ¼
X
k

ukðxÞ’ð� � kÞ; k 2 Z ð6Þ

where, uk(x) (referred as uk hereafter) are the approx-

imation coefficient at a certain spatial dimension x. The
other displacements w(x, t), �(x, t),  (x, t) can be
transformed similarly and Eq. (1) can be written as
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Taking the inner product on both sides of Eq. (7) with

’(� � j), where j = 0, 1, . . ., n�1 and using the ortho-
gonality of the translates of scaling functions, i.e.
Z
’ð� � kÞ’ð� � jÞd� ¼ 0 for j 6¼ k ð8Þ

Equation (7) can be written as

1

�t2
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where N is the order of the Daubechies wavelet and
�2

j�k are the connection coefficients defined as
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The details for evaluation of connection coefficients for

different orders of derivative is given in [6]. While
dealing with finite length data sequence, problems arise
at the boundaries. It can be observed from the ODEs

given by Eq. (9) that certain coefficients (uj) near the
vicinity of the boundaries (j = 0 and j = n � 1) lie
outside the time window [0 tf] defined by j = 0, 1, . . ., n
� 1. Several approaches for treating boundaries are

reported in the literature. Here, first a circular con-
volution method is adopted assuming periodicity of the
solution. Next, the wavelet based extrapolation scheme

[4] is implemented for solution of boundary value pro-
blems. This approach allows treatment of finite length
data and uses polynomial to extrapolate coefficients at

boundaries either from interior coefficients or boundary
values. The method is particularly suitable for approx-
imation in time for the ease to impose initial values.

However, either of the above methods converts the

ODEs in Eq. (9) to a coupled matrix equation of the
form
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dx2
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dx2
g�
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[	2] is the connection coefficient matrix corresponding to
�2

j�k and is different for periodic and non periodic

solutions. Though [	2] and [	1] for second and first
order derivative can be derived independently, in the
present formulation, [	2] = [	1]2 for imposition of

initial values. The above coupled Eq. (11) can be
decoupled by eigenvalue analysis of [	1] as

½	1� ¼ ½��½��½���1 ð12Þ

where, [�] is the diagonal matrix containing the diagonal
terms i�j and [�] is the eigenvector matrix, i =

ffiffiffiffiffiffiffi
�1
p

and
�j is given by
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Thus Eq. (11) can be written as

�I0�2j ûj þ I1�
2
j �̂j � A11

d2ûj
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where, ûj and similarly other transformed displacements
are ûj = [�]�1uj. Following the above steps, the other
three governing differential equations (2–4) can be

transformed as
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j ûj � A55

dŵj
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The form of the transformed equations Eqs. (14)–(17) is
the same as those in FSFEM and thus the remaining

part of WSFE formulation for composite beam will be
exactly similar to FSFE formulation described in [5].

2.1 Frequency domain analysis

Though periodic WSFE solution encounters all the
problems of FSFEM in time domain analysis it allows

the derivation of a relation between the transformed
ODEs in WSFEM with those in FSFEM. This leads to
the direct use of WSFE for frequency domain analysis
similar to FSFE.

For periodic solution, the wavelet transformation can
be written as the matrix equation [7]
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where Uj, ’j are the values of u(x,�) and ’(�) at � = j.

As described by Amaratunga et al. [7], for such circulant
matrix the Eq. (18) can be replaced by a convolution
relation, which can be written as

~Uj

� �
¼ ~K’j: ~uj
� �

ð19Þ

~uj
� �

¼ �Uj= ~K’j

� �
ð20Þ

where { ~Uj}, {~uj} are FFT of {Uj}, and {uj} respectively
(similar relations hold for other displacements). ~K’ is
FFT of first column K’ = {0 ’1 ’2 . . . ’N�2 . . . 0} of the
scaling function matrix in Eq. (18). Similarly the con-

nection coefficient matrix [	1] is also a circulant matrix
and thus Eq. (11) can be written as
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coefficients ~K�j are equal to the eigenvalues i�j of the

matrix [	1].
Substituting Eq. (20) in Eq. (21) and multiplying by

~K’j on both sides we get
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In FSFEM, the transformed ODEs are of same form

except �j are replaced with !j given as

!j ¼
2�j

n�t
ð24Þ

It can be seen that for a given sampling rate �t, �j
exactly matches !j up to a certain fraction of Nyquist

frequency fnyq ¼ 1
2�t. Thus, similar to FSFE, WSFE can

be used directly for studying frequency dependent
characteristics such as spectrum and dispersion rela-
tions, but only up to a certain fraction of fnyq, depending

on the order of basis.
For non-periodic solution, unlike periodic WSFE, the

�j is complex with the real part being equal to those in

periodic solution.

3. Numerical experiments

All the numerical experiments presented are per-
formed on AS4/3501–6 graphite-epoxy composite beam

with four plies. The beam has a depth of h= 0.01 m and
width b = 0.01 m. First, WSFEM is used to study the
spectrum relation of the beam for all the four modes.

Next, the formulated WSFE is used to study wave
propagation in finite length coupled beam. In both the
cases, the results are compared with those obtained

using FSFEM. Finally, the response of the beam to
modulated sinusoidal pulse showing all the four propa-
gating modes is presented.

In Fig. 1, the wavenumbers for a [04] beam, computed
using periodic WSFEM (kw) with N= 24 are plotted for
all the four modes i.e. axial, flexural, shear and con-
tractional and compared with those obtained using

FSFEM (kf). The sampling rate �t = 1 �s and corre-
sponding Nyquist frequency fnyq = 500 kHz. It can be
seen that all the kw matches exactly with kf up to a

certain fraction (approximately 0.6 here) of fnyq beyond

Fig. 1. Spectrum relation for graphite-epoxy [04] beam: (– � –) WSFEM and (—) FSFEM.
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which, we can see spurious dispersion. This fraction
depends only on N, and in Fig. 2 the percentage error in

the form of kf�kwj j
kfj j is plotted with respect to the fraction

of fnyq for different N. Moreover, in WSFEM, the �t
should be such that the frequency content of the loading

should be within this allowed frequency range to obtain

accurate results. The imposition of boundary conditions
for non-periodic WSFE solution adds an imaginary

(real) part to the wavenumber while the real (imaginary)
part is same as that of periodic WSFEM.
Figure 3 shows the transverse tip velocity in a canti-

lever beam due to unit impulse load applied at tip. The

Fig. 2. Comparison of wavenumbers kf (FSFEM) and kw (WSFEM) for different order (N) of basis.

Fig. 3. Transverse tip velocity in a graphite-epoxy [02/602] beam due to impulse bending load applied at tip (time history of load is

shown in inset).
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unit impulse load has a duration of 50 �s and frequency
content 44 kHz. The time history of the load is given as
an inset in Fig. 3. The beam has a ply layup of [02/602]

and length L = 0.25 m. As discussed earlier, although
WSFEM can be efficiently used for wave propagation
analysis of undamped finite length structures, in com-

parison with FSFEM, which does not work for such
structures, a damping of � = 0.1 (see Doyle [2]) is
considered. Both WSFEM and FSFEM require a single
element to predict the results which validates the

exactness of the dynamic stiffness matrices. For the
WSFEM result, the time window Tw = 1024 �s, the
sampling rate �t = 2 �s and the order of basis N = 24.

This result has been compared with FSFEM results for
different Tw. It can be seen that the FSFEM result for
Tw = 4096 �s is highly distorted due to ‘wrap around’.

These distortions decrease with increasing Tw to 65536
�s and matches well with WSFEM results.
Figure 4 shows the axial response due to modulated

sinusoidal pulse at 200 kHz (time history of the load is
shown in inset of Fig. 4) applied in transverse directions.
The load is applied at a point on an infinite [02/602]
beam and the response is measured at a point 2 m from

the point of application. For the above asymmetric ply
configuration a coupling exists between all the four
modes. It can be seen from Fig. 1 that the shear and

contractional modes propagate only after a certain cut-
off frequency (	 95 kHz for shear and 	 160 kHz for
contractional mode [5]). The loading frequency con-

sidered here is higher than these frequencies and thus all

the four coupled non-dispersive modes are captured
simultaneously. The extent of coupling can also be
graphically interpreted from Fig. 4. The results are

obtained using periodic WSFEM with �t = 1 �s and
N = 24. The reason behind choosing �t = 1 �s is that
for this sampling rate, spurious dispersion is not

encountered within the frequency range of loading (i.e.
200 kHz). WSFEM with increased �t = 2 �s will not be
able to simulate the accurate wave propagation.

4. Conclusions

This paper presents the formulation and validation of
wavelet based spectral element for coupled wave pro-

pagation analysis in composite beam. The novelty of the
spectral element developed is that it uses wavelet trans-
form to reduce the PDEs to ODEs unlike FFT in

conventional spectral element formulation. The present
method proves to be more efficient as it removes several
problems associated with FSFEM for time domain
analysis. In this paper, WSFEM is also used for fre-

quency domain analysis. Based on this analysis, the
sampling rate required in WSFEM can be a-priori
determined depending on the excitation frequency and

order of wavelet basis. Numerical experiments presented
highlight these advantages and limitations of WSFE in
comparison to FSFE, for time and frequency domain

analysis respectively.

Fig. 4. Axial velocity of graphite-epoxy [02/602] beam due to sinusoidal pulse modulated at 200 kHz applied in transverse direction

(time history of load is shown in inset).
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