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Abstract

The assumption that structures have deterministic material properties is implicitly involved in the most calculation of
standard structural analysis. Material and geometric properties are assumed to constitute homogenous, one-dimen-

sional stochastic fields, which means that the response deflection is also a stochastic field. The stochastic generalized
differential quadrature method is introduced and formulated for structural analysis problems. The concept of the
variability response function is extended to the stochastic differential quadrature method and used to compute spectral-

distribution-free upper bounds of the response variability. In addition, the generalized differential quadrature procedure
is described for a beam bending problem.

Keywords: Stochastic generalized differential quadrature; Random material and geometric properties; Response

variability; Spectral-distribution-free upper bounds; Variability response function

1. Introduction

The assumption that structures have deterministic

geometrical and material properties is implicitly
involved in the most calculation of standard finite ele-
ment structural analysis. The material and geometric

properties of real structures have uncertainties, which
have to be considered in structural analysis. The
uncertainties of the structures are then for practical

structural analysis considered through the increase of
the safety factors.
The input quantities (material and geometrical prop-

erties) are assumed to constitute homogenous, stochastic

fields. It means that the response deflection is also a
stochastic field. The stochastic generalized differential
quadrature formulation is introduced and used to find

the influence of the randomness of the input quantities
on the randomness of the response deflection. The first
and second moments of stochastic properties are taken

for describing the randomness of input quantities. The
stochastic stiffness matrix is represented as a linear
combination of deterministic and stochastic parts. The

response variability is calculated using the first order
Taylor-expansion approximation of the variability
response function. The concept of variability response
function, introduced by Deodatis and Shinozuka [1], is

extended to GDQ and used to compute spectral-dis-
tribution-free upper bounds of response variability. The
spectral-distribution-free upper bounds are very impor-

tant for engineers because only mean values and the
coefficient of variations are usually known about the
randomness of structural properties. A numerical pro-

cedure is given and described for a beam bending
problem. A few examples for beam bending are com-
pletely calculated. A very significant example is where

the coefficient of variation of response deflection can
become larger than the coefficient of variation of input
quantities.
The aim of this paper is to formulate the generalized

differential quadrature (GDQ) method for stochastic
structural analysis and to extend the concept of the
variability response function to stochastic GDQ.

2. Variability of input quantities

We consider a structure with spatially varying mate-
rial and/or geometrical properties. Some structural

property, G(x), is assumed to constitute a homogenous,
one-dimensional random field of the following form:

GðxÞ ¼ G0½1þ gðxÞ� ð1Þ

where G0 is the expectation of this property, and g(x) is a

homogenous, one-dimensional, zero-mean, random
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field. This random field g(x) can be represented with its
variance �2gg and autocorrelation function:

Rggð�Þ ¼ E½gðxþ �ÞgðxÞ� ð2Þ

which leads to the variance and coefficient of variation
of property G(x):

Var½GðxÞ� ¼G0�
2
gg;COV½GðxÞ� ¼ �gg ð3Þ

3. Generalized differential quadrature method

The differential quadrature approximation of the nth
derivative of the function w(x) at the ith discrete point
on a grid is given by a weighted linear sum of the

function values at all discrete points (N points) along
that direction (direction x) as

dnwðxÞ
dxn

¼
XN
j¼1

c
ðnÞ
ij wðxjÞ ð4Þ

where c
ðnÞ
ij are weighting coefficients for the nth deriva-

tive and w(xj) are function values at grid points xj, j= 1,

2, . . . N. The goal of the generalized differential quad-
rature method is to find a simple algebraic expression for
calculating the weighting coefficients c

ðnÞ
ij for an arbitrary

choice of grid points. The weighting coefficients for the
mth-order derivative are given by recurrence relations in
general form as, Du et al. [2],

c
ð1Þ
ij ¼

Mð1ÞðxiÞ
ðxi � xjÞMð1ÞðxjÞ

for i 6¼ j; i; j ¼ 1; 2; . . . N

ð5Þ

c
ðmÞ
ij ¼ m c

ðm�1Þ
ii c

ð1Þ
ij �

c
ðm�1Þ
ij

xi � xj

 !
for i 6¼ j;

m ¼ 2; 3; . . . N� 1; i; j ¼ 1; . . . N ð6Þ

c
ðmÞ
ii ¼ �

XN
j¼1;j 6¼i

c
ðmÞ
ij for m ¼ 1; 2; . . .N� 1;

i ¼ 1; 2; . . . N ð7Þ

where

MðxiÞ ¼
YN
j¼1
ðx� xjÞ ð8Þ

These recurrence expressions are very useful for imple-
mentation in programming. There is no need to solve a
set of algebraic equations to find the weighting coeffi-

cients, and we have no restriction on the chosen grid
points. There is no influence of loading or boundary
conditions on the weighting coefficients which, once

calculated, can be used for the next loading or boundary

conditions on the same beam. Only the new right side
(the force vector) for a set of algebraic equations should

be evaluated. Before further analysis the new boundary
conditions should also be applied. According to these
features less computational effort is required for solving

any of structural problems by using generalized differ-
ential quadrature method. The application of the GDQ
method for static structural problems leads, in the gen-

eral case, to a set of N algebraic equation with N
unknown function values at the grid points.

4. Stochastic generalized differential quadrature

formulation

The standard deterministic differential quadrature
formulation of any structural problem for further
numerical analysis is expressed as

K0w ¼ q ð9Þ

Involving the randomness of material and/or geometric
properties, the formulation for the stochastic analysis is
then, according to Shinozuka and Deodatis [3], given as

ðK0 þ�KÞw ¼ q ð10Þ

where K0 is the deterministic stiffness matrix and �K is

the stochastic part of the stiffness matrix. The stochastic
response vector is approximated with:

w ¼ ½I�QþQ2 � � � � �K�10 q

¼ ðI�QÞw0 ð11Þ

with the assumption that variance is sufficiently small
and that

Q ¼ K�10 �K

It now follows that the expression for expectation of
response deflection is

E½w� ¼ w0 ð13Þ

and the covariance matrix of the response deflection is
given by:

Cov½w;w� ¼ E½ðw� w0Þðw� w0ÞT�
¼ E½QW0Q

T� ð14Þ

where W0 ¼ w0w
T
0 .

According to the definition of the randomness of the
structural property G(x), the stochastic value of that
property at any grid point xi is then

GðxiÞ ¼ G0ð1þ gðxiÞÞ ð15Þ

and the stochastic value of the response deflection:
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wðxiÞ ¼ w0ð1þ�wðxiÞÞ ð16Þ

The stochastic part of the stiffness matrix �K is
represented as a linear combination of N random vari-

ables g(xi):

�KðeÞ ¼
XN
i¼1

gðxiÞ�Ki ð17Þ

The coefficient matrices �Ki, (i = 1, . . .N), are all
deterministic. It is possible to perform a first-order
Taylor expansion of w around the mean values of these

N random variables, g(xi), where all these mean values
are equal to zero:

w ¼ w0 þ
XN
i¼1

gðxiÞ
@w

@gðxiÞ

� �
E

¼

Kw ¼ q
@

@gðxiÞ ½Kw�E ¼
@q

@gðxiÞ

h i
E

@K
@gðxiÞ

h i
E
w0 þ K0

@w
@sðxiÞ

h i
E
¼ 0

@w
@gðxiÞ

h i
E
¼ �K�10

@K
@gðxiÞ

h i
E
w0



























¼ w0 �
XN
i¼1

K�10

@K

@sðxiÞ

� �
E

w0gðxiÞ

¼ w0 �
XN
i¼1

K�10 �Kiw0gðxiÞ ð18Þ

where [@w/@g(xi)]E and [@K/@g(xi)]E are values calcu-

lated at the mean values of the random variables g(xi)
and N is the number of grid points. This leads to a first-
order approximation of the covariance matrix of the
response vector w:

Cov½w;w� ¼ E½ðw� w0Þðw� w0Þ
T�

¼
XN
i¼1

XN
j¼1

K�10 �KiW0ð�KjÞTðK�10 Þ
TE½gðxiÞgðxjÞ�

ð19Þ

The only unknown quantity is now the expectation
E[g(xi)g(xj)]. This expectation can be written using the

definition of the autocorrelation function and the
Wiener-Khintchine transformation [4] as

E½ðgðxiÞgðxjÞ� ¼ Rggðxi � xjÞ

¼
Z1

�1

Sggð�Þei�ðxi�xjÞd� ð20Þ

where Sgg(�) is the power-spectral-density function of
the stochastic field g(x). Substituting this expression into

Eq. (19), the covariance matrix can be obtained as:

Cov½w;w� ¼
R1
�1

Sggð�Þ
PN
i¼1

PN
j¼1

K�10 �KiW0ð�KjÞT

ðK�10 Þ
Tei�ðxi�xjÞd� ð21Þ

Then, the variance vector of the response vector w,

consisting of the diagonal elements of the covariance
matrix of w, is found to be:

Var½w� ¼
Z1

�1

Sggð�Þ
XN
i¼1

XN
j¼1

diagðK�10 �Kiw0ÞK�10 �Kjw0e
i�ðxi�xjÞd�

¼
Z1

�1

Sggð�ÞVð�Þd� (22)

where V(�) is the first-order approximation of the
variability response function [1], defined as

Vð�Þ ¼
XN
i¼1

XN
j¼1

diagðK�10 �Kiw0ÞK�10 �Kjw0

½cosð�xiÞ cosð�xjÞ þ sinð�xiÞ sinð�xjÞ� ð23Þ

and diag[�] means a diagonal matrix whose diagonal
components are equal to the vector within the
parentheses.
If we consider a specific degree of freedom wi, and its

corresponding response variability component Vi(�), of
the coefficient of variation is found to be bounded as:

COV½wi� � �gg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Við��Þ

p
E½wi�k k ð24Þ

where �* is the point at which the variability response

function takes its maximum value:

Við��Þ � Við�Þ;�1 < � <1 ð25Þ

5. Application of stochastic generalized differential

quadrature to beam bending problem

Consider a prismatic beam of length L under a

transversal load q(x). The equation of equilibrium in the
general case is:

@2

@x2
EðxÞIðxÞ @

2w

@x2

� �
¼ qðxÞ ð26Þ

where E(x) is Young’s modulus and I(x) its moment of
inertia. We assume that the flexural rigidity E(x)I(x) =
k(x) is a homogenous, one-dimensional random field

with values at any grid point defined as:

kðxiÞ ¼ k0½1þ�k;i� ð27Þ

where �0 is the expectation value, and �k,i is the grid
value of the zero-expectation, one-dimensional, homo-
genous random field �k(x). The deterministic part of the

stiffness matrix for GDQ method is then:
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K0 ¼ kic
ð4Þ
ij þ 2

XN
l¼1

c
ð1Þ
il klc

ð3Þ
ij þ

XN
l¼1

c
ð2Þ
il klc

ð2Þ
ij

" #N
i;j¼1

ð28Þ

The stochastic part of the stiffness matrix is represented

as a linear combination of N random variables �k,i

�KðeÞ ¼
XN
m¼1

�k;m�Km ð29Þ

where the coefficient matrices are given as follows:

�Km ¼ �mic
ð4Þ
ij þ 2c

ð1Þ
im c
ð3Þ
ij þ c

ð2Þ
im c
ð2Þ
ij

h iN
i;j¼1

ð30Þ

The first-order approximation of the variance vector of
the response deflection vector w is now:

Var½w� ¼
Z1

�1

SkkðkÞ
XN
i¼1

XN
j¼1

diagðK�10 �Kiw0ÞK�10

�Kjw0½CS�ijð�Þd� ð31Þ

where

½CS�ijð�Þ ¼ cosð�xiÞ cosð�xjÞ þ sinð�xiÞ sinð�xjÞ ð32Þ

If we consider a specific degree of freedom wi, and its

corresponding response variability component Vi(�), the
related coefficient of variation is bounded as

COV½wi� � �kk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Við��Þ

p
E½wi�k k ð33Þ

where �* is the point at which the variability response
function takes its maximum value.

6. Numerical examples

A cantilever beam with length L and flexural rigidity
E(x) I(x) under a concentrated load K on its free edge is
taken as the first example (Fig. 1).

The variability response function is calculated for the
deflection on the edge of the beam, w(L). The results are
evaluated using the stochastic differential quadrature

method with nine grid points (Fig. 2). The coefficient of

variation of the edge deflection is expressed as the

function of the coefficient of variation of flexural
rigidity.
A simply supported beam with length L and flexural

rigidity E(x)I(x) subjected to an antisymmetric uniform
load q is considered in the second example (Fig. 3). The
variability response function is calculated for the

deflection at the quarter-point, w(L/4). The results are
evaluated using the stochastic differential quadrature
method with nine grid points (Fig. 4).
The maximum value of the variability response func-

tion is calculated to evaluate the spectral-distribution-
free upper bound according to Eq. (24). The spectral-
distribution-free upper bound is computed as follows:

COVwðL=4Þ � 2:107�kk ð34Þ

The coefficient of variation takes its maximum value for
�* 	 5.9L. This example is very significant, and shows

that the coefficient of variation of response deflection
can become larger than the coefficient of variation of
flexural rigidity of the beam.

7. Conclusions

The stochastic differential quadrature formulation is
given for structural analysis problems with random

material and/or geometric properties. The concept of
variability response function is extended to the sto-
chastic GDQ method. The stochastic stiffness matrix is

expressed as a linear combination of deterministic and
Fig. 1. Cantilever beam under a concentrated load on its free

edge.

Fig. 2. Coefficient of variation of the response deflection w (L).

Fig. 3. Simply supported beam under an antisymmetric

uniform load.
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stochastic parts. The first-order approximation of
variability response function is used to describe the
variability response. Spectral-distribution-free upper
bounds have been computed using the concept of the

variability response function. The introduced stochastic
generalized differential quadrature formulation is

described for a beam bending problem. The coefficient
of variation of response deflection is expressed as a
function of the coefficient of variation of flexural rigid-

ity. It has been shown that the coefficient of variation of
response deflection can become larger than the coeffi-
cient of variation of flexural rigidity.
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Fig. 4. Coefficient of variation of the response deflection & (L/4).
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