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FEM stress recovery using Trefftz polynomials
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Abstract

Stress recovery is an important part of the stress analysis in the FEM computations and can improve both accuracy
and rate of convergence of computed stress fields. Satisfying both equilibrium and boundary conditions improves the
results. In this contribution, a stress recovery technique using Trefftz (T-)interpolation polynomials and taking into
account also the static boundary conditions (b.c.) in the most frequently used displacement FEM formulation is
presented. A special kind of interpolation polynomial is used for elements on curved boundaries.
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1. Introduction

Stress recovery is an important part of the most fre-
quently used displacement version of the FEM
computation. It is known that stress smoothing using
interpolation functions that satisfy the governing equa-
tions improves both the accuracy and the rate of
convergence of the stress field computed in the second
part (post-processing phase) of the FEM analysis [1,2].
The stresses are obtained by interpolation from the
nodal displacements. If the T-functions (i.e. functions
that satisfy the governing equations inside the domain,
but not necessarily the boundary conditions) are used
for the interpolation, the numerical procedure is espe-
cially efficient as the coefficients of T-polynomials are
computed only once for each material [3,4]. The coeffi-
cients are obtained numerically [4]. Both these features
increase the computational efficiency of the models.
Inclusion of static b.c. is also very important and con-
siderably improves the solution at the boundary points,
where usually the worst accuracy is achieved in numer-
ical solutions. General T-polynomials, however, are able
to satisfy the b.c. only locally at a point. It is important
to use such interpolation functions, which fit best the
b.c. along the boundary. In this contribution, an appli-
cation of the stress recovery technique is used to obtain
the stress field in FEM models using T-polynomials.
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Additional interpolation functions are used to best fit
the static b.c. for curved boundaries.

An implementation of the procedure was used to
obtain stress fields from the nodal displacements in
FEM programs Z88 [5] and ADINA [6].

2. Stress recovery from the nodal displacements and b.c.

We assume that the displacement field at a field point
with the local co-ordinates x, with the local origin at the
point where the stresses are to be computed (as the
stresses are computed very simply from the coefficients
of the first order polynomial terms), u(x), is given in the
form

u(x) = U(x)e (1)

where U(x) is a matrix of T-displacement-functions and
¢ is the vector of unknown coefficients. If T-polynomials
are used for the T-functions, one can easy express strain
and stress field from Eq. (1). The stress field can be
written as

o(x) = S(x)c (2)

where the matrix of T-stress-functions S(x) is obtained
from the derivatives of the matrix U(x) and applying
Hookes law in the usual way. Similarly, T-tractions are
given as

t(x) = T(x)e 3)
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In this approximation the full T-polynomials of the
chosen order are used as interpolators in all relations
above. The T-displacements, U(x), are in the form of
polynomials, which satisfy the Lamé equations. The
unknown coefficients ¢ are to be computed for each
point of interest (p.o.i.), where the stresses are evaluated
from the patch of displacements and b.c., if the corre-
sponding p.o.1. is on, or close to, the domain boundary.

The full polynomials of #-th order contain 2(2n + 1)
in 2D and 3(n + 1)* in 3D T-displacement functions.
Each node and boundary point in the patch gives d
equations for obtaining the unknown coefficients c,
where d denotes the dimension. Generally, the patch is
chosen so that the total number of equations is greater
or equal to the number of unknown coefficients, ¢, and
the problem is solved a LS sense as

Z w(A(xr)e — b1)2: min 4)

I

where uy is the vector of displacements at the I-th nodal
point and w is a weighting function that takes into
account the dimensionality of corresponding equation.

Usually the largest errors in approximated fields are
on the domain boundaries, or on the inter-domain
boundaries between inhomogeneous material parts. The
polynomial interpolation is efficient for stress compu-
tation at internal points and at points on straight
boundaries. The shape of the boundaries, however,
influences also the relation between the displacements
and tractions at both the boundary points and the points
close to them. The basic interpolation functions have to
satisfy the b.c. not only at the p.o.i. but also in its close
vicinity. The displacements and tractions on the convex
boundaries can also be interpolated by polynomials, as
the constant normal tractions result in a hydrostatic
state of stress, and therefore the constant terms locally
satisfy the b.c. in this region. However, in the domain
with the concave boundaries, the term r~! has to be
added to both normal and tangent displacement com-
ponents of the displacements, where r is the radius of
curvature of the domain boundary at the corresponding
p.o.i. These functions satisfy the Lamé equations (the
polar coordinate form [7,8] is the simplest form for this
particular case) and, thus, are T-functions. Moreover,
they also give constant normal, or tangent, tractions
along the local boundary, i.e. they are the lowest order
terms that satisfy both the equilibrium equations and
static b.c. at such p.o.i. on the domain boundary. The
stresses are given with terms 2 in this case. Especially,
the first T-function is defined by the T-stresses o, =
—0y = 2G/r2 and o,, = 0 and corresponding T-dis-
placements u, = 1/r and u, = 0, and the second by the
T-stresses 0, = o, = 0 and o, = l/r2 and corre-
sponding T-displacements u,, = 0 and u, = 1/r, where G
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Fig. 1. 2D cantilever with shear load acting in the end section.

is the material shear modulus. Similar T-functions have
to be added in 3D, where double curvature also has to be
considered.

Notice that the discontinuity in the static b.c. can be
correctly obtained in this way, which is very important
by studying the local fields such as Hertz contact, etc.

3. Numerical experiments

In the first example, a 2D cantilever with shear load
acting in the end section (Fig. 1) was modeled using
three quadratic elements. The exact displacements are
given by cubic polynomials, and so the displacements
obtained by FEM analysis contain errors. The stresses
obtained by the averaging technique are largest in their
shear components at the nodes 7, 12 and 17 (the exact
value there is 1.0000), and are equal to 0.8732, 0.8648
and 0.8754, respectively. The corresponding stresses
obtained using cubic T-displacement for polynomials
(i.e. 2 x 7 terms) are 0.9975, 1.0087 and 1.0000.

In the second example, a band with a hole (Fig. 2),
with loads corresponding to the infinite plane with the
hole in uniaxial tension in the x-direction, was analyzed
using two different fine meshes. Von Mises stress fields
obtained both by the averaging technique in FEM
software and by T-interpolation from FEM nodal dis-
placements are shown in Fig. 3.

4. Conclusions and future research in the field

The paper shows a simple and efficient technique to
compute the smooth stress fields from the nodal dis-
placement obtained from FEM analysis. Both
displacements and stresses can be evaluated in arbitrary
p-o.i. by interpolation from the displacements at discrete
points of a patch of closest nodes using Trefftz inter-
polation functions and by including prescribed
boundary conditions at the closest boundary point, if
the corresponding p.o.i. is on, or close to, the boundary.
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Fig. 2. A band with a hole.

Special T-functions are included for interpolation at the
points on, or close to, concave boundaries.

More detailed study is planned into the application of
the method to 3D problems with curved boundaries and
also to the study of convergence and error estimation
using this technique.
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Fig. 3. Von Mises stress fields obtained by the averaging technique in FEM software and by T-interpolation from FEM nodal
displacements.
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