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Abstract

Quasicrystals display random properties associated with the coupling coefficient between macroscopic (phonon)
deformation and microstructural (phason) changes. With reference to the infinitesimal deformation regime, by coupling

Monte Carlo simulation with finite element techniques, we show the possible existence of phenomena of stochastic
clustering and self-organization of phonon and phason modes in icosahedral quasicrystals by considering the phonon–
phason coupling coefficient as a random field over the body.
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1. Introduction

Experiments developed using X-ray beams have
shown that some metallic alloys display diffraction
patterns with icosahedral symmetry, so that they are

intrinsically quasiperiodic [1] because icosahedral struc-
tures alone cannot fill the space unless alterations of a
different geometric nature are included. Such alterations

induce quasiperiodicity. For this reason, such alloys are
called quasicrystals. They were discovered in 1984 [2]
and have since been used for energy savings and for the
production of thin films, fillers for composites, and

sinters.
To assure quasiperiodicity, substructural changes are

allowed inside crystalline cells. They are (i) collective

atomic modes and (ii) tunneling of atoms below ener-
getic barriers at a distance less than the atomic diameter.
Quasicrystals are, then, complex materials [3], and to

represent the morphology of each material element one
needs to introduce morphological descriptors of the
substructural changes within each crystalline cell. In
particular, the standard displacement field u is selected

to represent common deformation (phonon) modes and a
vector field w is used to describe additional atomic
(phason) modes within each crystalline cell. We follow

the mechanical description of quasiperiodic alloys in [4–

6] and restrict the attention to the infinitesimal defor-
mation regime. We consider the phonon–phason

coupling coefficient as a random field over the body to
capture uncertainties suggested by experiments in the
evaluation of it. By means of Monte Carlo simulations

coupled with finite element analyses, we evaluate the
portraits of mean coefficient of variation, skewness, and
kurtosis of phonon and phason modes in a four-point

bending test and put in evidence phenomena of clus-
tering and self-organization of phonon and phason
modes. In this way, we extend the results given in [5].

2. Elasticity for quasiperiodic alloys

Let B be the regular (in the sense of ‘fit’) region of the

Euclidean point space E3 occupied by a quasicrystalline
body in its reference place. X is the generic point of it
where a material element is collapsed. If we do not

consider atomic changes within the material element,
then during a motion:

B � ½0; t�� ðX; tÞ ! x ¼ x � ðX; tÞ 2 E3

‘along’ the interval of time [0,t*]. The standard dis-

placement field u= u*(X, t) = x � X is the descriptor of
the phonon degrees of freedom, i.e. of the standard
traveling waves. At each X and t, u is an element of the

translation space Vec over E3.
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For quasicrystals, the material element is still a crys-
talline cell but is not perfect due to the presence of

substructural changes as collective atomic modes and/or
tunneling of atoms below energy barriers, which assure
quasiperiodicity to atomic lattices. Internal changes

accrue and are represented by a sufficiently smooth
vector field w. During a motion, we then have:

B � ½0; t��ðX; tÞ ! w ¼ w�ðX; tÞ 2 Vec

Notice that u and w belong strictly to different copies

of Vec. In fact, the shift occurring in a material element
collapsed in a place is of a different nature with respect
to the macroscopic displacement of the material element

itself described by u.
In the case of elastic quasicrystals, the elastic energy

displays a constitutive structure of the form e = e*(Hu,
Hw), so that the total energy of the body is given in

referential representation by:
Z
B
ðe�ðru;rwÞ þUðxÞÞ dðvolÞ

where U(�) is the potential of possible external bulk

forces.
At equilibrium, under suitable conditions of smooth-

ness for e*(�,�) and U(�), appropriate Euler–Lagrange
equations are given by:

Div P þ b ¼ 0 and Div S ¼ 0

where P = @Hue is the first Piola–Kirchhoff stress, S =
@Hwe is the phason stress associated with substructural

changes within each crystalline cell, and b = gradU is
the vector of body forces, with grad the gradient with
respect to x. The phason stress indicates contact inter-
actions between neighboring material elements as a

consequence of phason changes within at least one of
them.

Invariance of e*(.,.) under rotations of observers

implies also

eðPFT � ðrwÞTSÞ ¼ 0

with e being Ricci’s alternator index and F = Hx being
the standard deformation gradient. If we restrict our

treatment to the infinitesimal deformation regime in
which P	� and S	Sa, where � is Cauchy’s stress and
Sa is the phason stress in the current place, and consider

a linear constitutive behavior, we get:

P 	 � ¼ Cru þ K
0rw;S 	 Sa¼ K

0ruþ Krw

In this case, the elastic energy is the sum of three con-

tributions: (i) a pure phonon part 0.5CHu� Hu, (ii) a pure
phason part 0.5 KHw�Hw, and (iii) an interaction energy
K0Hw�Hw. In the case of a planar quasicrystal with five-

fold symmetry, we get:

Cijkl ¼ ��ij�klþ�ð�ik�jlþ�il�jkÞ

i.e. the standard expression for simple isotropic elastic
bodies where � and � are the Lamè constants, �ij is the
Kroenecker delta, and

Kijkl ¼ K1�ik�jl þ K2ð�ij�klþ�il�jkÞ
K 0ijkl ¼ Rð�il � �j2Þð�ij�kl � �ik�jl þ �il�jkÞ

where no summation is assumed on repeated indices.

3. Interaction between phonon and phason modes

The way in which one may estimate the phonon–

phason coupling coefficient R is not well established.
Theoretical models suggest R to be of at least one order
of magnitude smaller than K1 and K2. However,

experiments based on X-ray diffuse scattering in a grain
of Al–Pb–Mn quasicrystals indicate a value of R larger
than K1 and K2, at least for samples in which off-stoi-

chiometry defects are included in a single phase. In some
circumstances, X-ray diffuse scattering data would sug-
gest that R vanishes, but such an interpretation appears
unrealistic: the elastic distortion influences phason

activity because it changes the energetic content of each
crystalline cell. Due to experimental uncertainties, the
phonon–phason coupling coefficient R is considered

here as varying at random over the body (thus as a
stochastic field over B) because quasicrystals may be
pictured by means of random tessellation (e.g. Penrose

tiling) of the space they occupy.
As a sample case, we consider R as a homogeneous

stochastic field over B described by a beta distribution

between R = 0.01K1 (a value at which it is practically
impossible to evaluate experimentally the velocity ani-
sotropy between modes propagating along fivefold axis
and modes along twofold axis) and R = K1; moreover,

we select � = 0.75�1011 N/m2 � = 0.65 � 1011 N/m2,
K1 = 0.81 � 1011 N/m2, and k2 = �0.42 � 1011 N/m2,
while the parameters in the beta distribution are set at

r = 73.5455, s = 735.4545, so that the mean value of R
is 0.1K1. By connecting finite elements with Monte Carlo
simulations, we evaluate the relevant statistics of the

phonon and phason displacements in a rectangular
sample endowed with a crack and submitted to a four-
point bending test (Fig. 1) under forces each equal to 10

N.
The results show the existence of patterns suggesting

self-organization and clustering of phonon and phason
modes, a result not recognized so far. These patterns

depend on the stochastic spatial correlation of data: the
larger effects occur in case of perfect correlation, and the
smaller is obtained in absence of correlation. The results

associated with the case of perfect correlation (called,
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here, ‘case H’) are presented in Figs 2–5. Of course, the

case of perfect correlation must be interpreted just as
upper bound.
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Fig. 1. Fourpoints bending test. X-axis: horizontal. Y-axis:

vertical.

Fig. 2. Phonon modes along x-axis: case H: (a) mean; (b)

coefficient of variation; (c) skewness; (d) kurtosis.

Fig. 3. Phason modes along x-axis: case H: (a) mean; (b)

coefficient of variation; (c) skewness; (d) kurtosis.

Fig. 4. Phonon modes along y-axis: case H: (a) mean; (b)

coefficient of variation; (c) skewness; (d) kurtosis.

Fig. 5. Phason modes along y-axis: case H: (a) mean; (b)

coefficient of variation; (c) skewness; (d) kurtosis.
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