
Positional description for nonlinear 2-D static and dynamic frame

analysis by FEM with Reissner Kinematics

D.N. Maciel*, H.B. Coda

Escola de Engenharia de São Carlos, Universidade de São Paulo
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Abstract

This paper presents a simple formulation to treat large deflections in 2-D frames by the finite element method. The
present formulation does not use the concept of displacement; it considers position as the real variable of the problem.

The strain determination is done directly from the proposed positional concept. A non-dimensional space is created and
relative configurations are used to directly calculate the strain energy and its derivatives at general points. The initial
configuration is assumed as the basis of calculation, i.e. Hooke’s law relates reference stress and engineering strain.

Reissner Kinematics are employed, i.e. initial plane cross-sections remain plane after deformation and angles are
independent of the slope of central line. Some static and dynamic examples are presented in order to show the accuracy
of the proposed technique.
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1. Introduction

The increasing search for economy and optimal
material application leads to the conception of very
flexible structures. As a consequence, the equilibrium

analysis in the non-deformed position is no more
acceptable for most of applications.

Various researchers have presented important con-
tributions regarding finite element procedures; see

[1,2,3,4,5]. These researches are very important to the
development of the human knowledge on conceptions
on geometric non-linear analysis of structures.

In this study, as in Coda and Greco [6] for Bernoulli
Kinematics, a simple position description language is
used to present a geometrical non-linear formulation for

Reissner Kinematics. This position description uses an
intermediate non-dimensional space that allows defining
a non-linear ‘engineering’ strain measure calculated
from relative fiber length for different positions of the

analyzed body.
The principle of minimum potential energy taken in

Lagrangian Description is applied, considering a simple

linear hyper-elastic constitutive relation. Reissner

Kinematics are adopted, so the shear deformation effect
in bending is considered. Examples show the good result

of the proposed technique, other analytical and numer-
ical solutions are used as reference.

2. Positional formulation

For simplicity, only the static formulation is presented
here.

The principle of minimum potential energy is written
using position and considering conservative elastic pro-
blems as

� ¼ Ue � P ð1Þ

where � is the total potential energy, Ue is the strain
energy and P is the potential energy of the applied
concentrated forces.

The strain energy can be written for the reference
volume V0 as

Ue ¼
Z

V0

uedV0 ¼
Z

V0

1

2
�e"edV0 ð2Þ

where �e is defined here as the ‘engineering stress’, i.e.
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the energy conjugate of the proposed ‘non-linear engi-
neering strain’ "e by Coda and Greco [6]. The potential

energy of applied forces is written as

P ¼ Fj�j ð3Þ

where � is the set of positions independent of each

other, which may be occupied by a point of the body.
The total potential energy is written as

� ¼
Z

V0

1

2
�e"edV0 � Fj�j ð4Þ

In order to perform numerically the integral indicated in

Eq. (4), it is necessary to map the geometric approx-
imation of the body in study and to know its relation
with the strain measurement adopted. Figure 1 shows

the reference configuration (B0), the actual configuration
(B1) and the non-dimensional space that provides a
‘bridge’ between B0 and B1. The reference configuration

adopted is the non-deformed position of body. In Fig. 1,
AI is the gradient of the mapping between the non-
dimensional space and B0 and AII is the same for B1.

A generic point position (x, y) inside the element, for
B0 and B1, can be written as function of the non-
dimensional coordinates, i.e.

ðxi; yiÞ ¼ ðxim; yimÞ þ
h

2
� � sin �; cos �ð Þi ð5Þ

where xim; y
i
m

� �
is a point in the central line, h is the

element width, (� sin�, cos�)i is a unity vector in the
plane of a generic cross section, and � is one of the non-
dimensional coordinates.

By deriving Eq. (5) regarding the non-dimensional
space coordinates, the elements of AI and AII can be
written as

Ai ¼
Ai

11 Ai
12

Ai
21 Ai

22

� �
¼

dxi

d�
dxi

d�
dyi

d�
dyi

d�

" #
ð6Þ

where,

Ai
11 ¼

dxm
d�
� h

2
�
d�

d�
cos � ð7Þ

Ai
12 ¼ �

h

2
sin � ð8Þ

Ai
21 ¼

dxm
d�
� h

2
�
d�

d�
sin � ð9Þ

Ai
12 ¼

h

2
cos � ð10Þ

The index ‘i’, Eq. (5) through Eq. (10), denotes the
number of the transformation, i.e. i=I ) non-dimen-
sional space to reference configuration (B0) and i=II)
non-dimensional space to current configuration (B1).

The mapping stretches �it and �
i
n can be calculated by

following the reference directions � and �, defined here
by the unit vectors ~Mt = [1,0]T and ~Mn = [0,1]T shown

in Fig. 1 as follows:

�it ¼ �ð ~MtÞ ¼ Ai 1
0

� �








 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai

11

� �2þ Ai
21

� �2q
ð11Þ

�in ¼ �ð ~MnÞ ¼ Ai 0
1

� �








 ¼ 1 ð12Þ

In this formulation the third direction is considered non-

deformable and therefore the principal direction �3 = 1.
The angle � (Fig. 1) between vectors ~mt and ~mn, after
deformation, is easily calculated, as

� ¼ arccos

½1 0�½AT
IIAII�

0
1

� �

�IIt �
II
n

8>><
>>:

9>>=
>>;
¼ arccos

AII
11A

II
12 þ AII

21A
II
22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AII
11

� �2þ AII
21

� �2q
8><
>:

9>=
>;

ð13Þ

The distortion occurring when the body changes from
configuration B0 to B1 can be simply calculated as

follows:

�nt ¼ ��
�

2
ð14Þ

And the stretches �t and �n from B0 to B1 are given by

�t ¼
�IIt
�It
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AII

11

� �2þ AII
21

� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AI

11

� �2þ AI
21

� �2q ð15Þ

�n ¼
�IIn
�In
¼ 1 ð16Þ

Finally, the engineering strains are calculated as

"t ¼ �t � 1 ð17Þ
"n ¼ �n � 1 ¼ 0 ð18Þ

Fig. 1. Auxiliary non-dimensional space and simple mapping.
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where "t and "n are the ‘non-linear engineering strains’
related, respectively, to ~T and ~N directions in the initial

configuration, B0. Therefore, the specific strain energy
for a simple linear constitutive law, is given by

ue ¼
1

2
E "2t þ

�2tn
2

� 	
ð19Þ

where E is the young modulus of the material.
Using Eq. (19) into Eq. (2), the integral of the total

strain energy becomes

Ue ¼
Z

V0

1

2
E "2t þ

�2tn
2

� 	
dV0 ð20Þ

Therefore, the total potential energy of the system (see
Eq. (4)) can be written as follows:

� ¼
Z

V0

1

2
E "2t þ

�2tn
2

� 	
dV0 � Fj�j ð21Þ

where V0 is the volume of the reference configuration B0.
The strategy for minimizing Eq. (21) employing FEM

is performed in the next section.
It is important to emphasize that @ue@"t

gives �t and
@ue
@�tn

gives, � tn, which are the nominal or engineering stress
components.

3. The numerical method

The proposed technique is similar to any finite ele-
ment method except the determination of strain, where

the auxiliary space is used in an original fashion.
Dividing the body into finite elements the variables in

Eqs. (9) (10) along the central line of the element, i.e. xm,

ym and � are approximated as follows:

xm ¼ � iXi ð27Þ
ym ¼ � iYi ð28Þ
� ¼ � i� i ð29Þ

where the vectors X, Y and � are nodal variables and
vector � are the set of shape functions. Besides, the
angle � is not the first derivative of the transversal dis-
placement as in the Euler–Bernoulli hypothesis.

Substituting Eqs. (27), (28) and (29) in Eqs. (9) (10), it
becomes:

x ¼ � iXi �
h

2
� sin �i� ið Þ ð30Þ

y ¼ � iYi þ
h

2
� cos �i�ið Þ ð31Þ

In the same way, substituting the variables approxima-

tions (Eq. (27) to Eq. (29)) in gradient mapping
expressions, i.e. Eq. (12) to Eq. (15), gives:

Ai
11 ¼ �jXi

j �
h

2
� �j�

i
j

� �
cos � k� i

k

� �
ð32Þ

Ai
12 ¼ �

h

2
� sin � k�

i
k

� �
ð33Þ

Ai
21 ¼ �jYi

j �
h

2
� �j�

i
j

� �
sin � k� i

k

� �
ð34Þ

Ai
12 ¼

h

2
� cos � k� i

k

� �
ð35Þ

where,

�j ¼
d�j

d�
ð36Þ

The Total Potential Energy in Eq. (26) can be expressed

as a function of the position coordinates, that is,
�! fðX1;Y1;�1;X2;Y2;�2;X3;Y3;�3Þ. Therefore, the
strategy is to minimize Eq. (26) related to the nodal

parameters in order to find out the equilibrium position
of the body.
Or, in compact notation,

@�

@pi
¼ giðpjÞ ¼ fiðpjÞ � Fi ¼ 0 ð37Þ

where pi is the vector of the nodal position.
In vector representation one has:

gðp;FÞ ¼ 0 ð38Þ

The vector function g(p) is non-linear regarding the
nodal parameters (p and F). To solve Eq. (38) one can
use the Newton-Raphson procedure.

In the next section, numerical examples are shown
and compared to the literature in order to validate the
proposed technique.

4. Numerical examples

4.1. Pinned fixed diamond frame

The following properties are adopted to run the prob-
lem: L=1, E=1, I=1 and A=1000. Figure 2 shows
the diamond frames and the measured ‘displacements’.
Displacements are calculated here by the difference

between positions to allow comparisons with Mattiasson
[7]. Symmetry is considered.
Twenty finite elements were used to run this problem.

The maximum achieved errors are 1% in tension and
0.3% in compression. There is no measurable difference
between the results obtained here and those obtained by

Coda and Greco [6].
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4.2. Spin-up maneuver

The second numerical example is a simple fixed flex-

ible beam and is a benchmark of non-linear dynamic
formulations (see Fig. 3). Ten finite elements are used in
the discretization. In Fig. 4 the displacement U1 is

shown. A consistent mass matrix is used to solve this
problem.

5. Conclusions

In this paper a consistent and simple formulation is

proposed to solve geometrically non-linear plane frame
problems considering Reissner Kinematics. In order to
show the didactic possibilities of the technique, a simple

engineering language is used. The analyzed examples,

Fig. 2. Diamond frame, static scheme for tension (P > 0) and compression (P < 0) situations.

Fig. 3. Flexible spin-up maneuver input data.

Fig. 4. Displacement U1.

D.N. Maciel, H.B. Coda / Third MIT Conference on Computational Fluid and Solid Mechanics 355



mainly the second, show that shear effects are of less
importance for the analysis of very deformable struc-

tures, but independent rotating and Cartesian position
approximations, achieved using Reissner Kinematics,
bring an important improvement to the non-linear

analysis of frames by the position description method.
The formulation developed can be used for practical
applications and presents good convergence and

accuracy.
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