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Abstract

A method for the numerical investigation of aeroelastic phenomena is proposed so that random properties of
aerodynamic forces can be taken into account. The numerical analysis of aeroelastic instabilities is based on eigenvalue

problems with random coefficients, thus enabling the analysis of the random characteristics of critical flow speeds,
respectively. The aerodynamic coefficients are treated as normally distributed random variables. In order to determine
the statistical properties of the critical speeds, a spectral stochastic finite element procedure is applied. Hence, the

reliability of structures against steady-state aeroelastic instabilities can be estimated.
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1. Introduction

In particular cases, the wind flow around engineering
structures may cause vibrations with large amplitudes if

the aerodynamic forces due to the fluid flow around the
structure depend on the movement of the structure itself.
Thus, the flow–structure interaction may induce self-

excited vibrations leading to static aeroelastic instabil-
ities, such as divergence phenomena, or to dynamic
galloping or flutter instabilities. In order to enable

numerical investigations, the vibration behavior is gen-
erally formulated in terms of eigenvalue problems,
which allow the determination of critical flight speeds.
In engineering approaches, the aerodynamic forces

are often expressed in terms of aerodynamic pressure
coefficients. It is common practice to determine the
coefficients in wind tunnel experiments. Then, averages

of the measured values, which are fluctuating in space
and time, are used for the numerical analysis of aero-
elastic phenomena. When fluctuations are taken into

account, eigenvalue problems with random parameters
have to be regarded. A quite versatile method for the
analysis of random eigenvalues and eigenvectors is the

Monte-Carlo simulation. In order to reduce the
numerical effort, several enhancements of the method
have been proposed, e.g. for the numerical analysis of
large systems by Pradlwarter et al. [1]. In [2], a

polynomial chaos expansion is used for the description

of the stochastic properties of the eigenvalues and
eigenvectors. The coefficients are computed by Monte-
Carlo simulation.

This paper outlines a spectral stochastic finite element
method for the solution of the eigenvalue problem with
stochastic parameters. The polynomial chaos expansion

is used to represent the stochastic eigenvalues. Then, a
Galerkin-like procedure is applied, leading to an
enlarged system of multi-parametric eigenvalue equa-

tions. After some algebraic transformation, the
eigenvalue equations are reduced to an ordinary eigen-
value problem of the size of the deterministic problem.
Starting with this solution of the zeroth-order poly-

nomial chaos expansion, the higher-order terms are
determined afterwards.

2. Numerical investigation of aeroelastic instabilities

In order to present the solution method for the

eigenvalue problem with random parameters, the
steady-state aeroelastic stability of an airfoil is investi-
gated in the following. If an airfoil with elastic
properties is accidentally rotated in steady flight, an

aeroelastic moment is generally induced, which causes a
twisting of the airfoil. Since the moment due to the flow
around the airfoil is proportional to the square of the

flow speed, there exists a critical speed at which the
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elastic stiffness is annihilated and the airfoil is torsion-
ally divergent.

The numerical investigations for fluid flow around the
airfoil are based on the laws of potential flow theory.
Thus, the action of the aerodynamic force can be

represented by a lift force, which acts through the
aerodynamic center, and a moment about the same
point. When the equilibrium of forces and moments is

formulated, the parts of aerodynamic force and
moment, which depend on the angle of twist, can be
inserted in an aerodynamic matrix A. Finally, the
aerodynamic matrix couples the vertical and the twist

deformation of the airfoil. When the stiffness properties,
corresponding to vertical motion and the twist, are
described by the matrix K, the divergence instability can

be investigated by means of the eigenvalue problem

ðK�qð�ÞAð�ÞÞ � ŷ ¼ 0 ð1Þ

where stochastic variables are denoted by � in case that
random behavior of the fluid flow is taken into account.

In equation (1), the impact pressure q(�) remains as
corresponding eigenvalue. Then, the critical speed u can
be determined from q= 1

2 
 u
2, where 
 is the air density.

In order to describe the random properties of the aero-
elastic forces, the aeroelastic matrix is introduced by the
sum A(�) = A0 + �(�) A1. The sum consists of the mean

value A0 and the random part with zero mean, which
depends on the matrix A1 and the normally distributed
random variable �(�). As proposed by Spanos et al. [3], a
polynomial chaos expansion is used to approximate the

random impact pressure q(�) =
PN

j¼1 qj jð�Þ, where  j

(�) are Hermite polynomials in terms of the random
variable �(�) and qj are deterministic coefficients,

respectively. In order to determine the coefficients qj, the
eigenvalue Eq. (1) is weighted by each polynomial  m(�),
resulting in a system of N eigenvalue equations. Finally,

averaging < � > gives

½< m>Kþqjð< m 
j> A0þ <� m 

j>A1Þ� � ŷ ¼ 0 ð2Þ
m ¼ 1; . . . ;N; j ¼ 1; . . . ; N

where the Einstein notation is used for better compre-

hension. The calculation of the statistical moments of
polynomial expressions by numerical integration pro-
cedures may cause immense computational effort.
However, analytical relations can be used, thus accel-

erating the averaging enormously. In order to determine
the coefficients qj and the eigenvector ŷ, the system of
eigenvalue Eq. (2) is at first resolved by means of tri-

angular decomposition. Since the inverse of the
aeroelastic matrices Ai have to be evaluated, the pseudo
inverse is used, because Ai can be unsymmetric and

singular. The triangular decomposition leads to an
eigenvalue equation, in which the zeroth-order

coefficient of the polynomial chaos expansion remains as
corresponding eigenvalue. Thus, the eigenvalue problem

can be solved for the zeroth-order coefficients and the
eigenvectors. Then, the higher-order coefficients can be
determined recursively, since the values for coefficients

of lower order can be inserted in Eq. (2). In order to
determine the higher order coefficients, it is more effi-
cient to continue with a diagonalization of the

eigenvalue equations using the eigenvector, which cor-
responds to the instability mode under consideration.
Thus, the eigenvalue equations are reduced to a linear
system of equations of the size of polynomial chaos

expansion, which can be solved easily for all coefficients
with respect to the instability mode.
As the triangular decomposition leads to an eigenva-

lue equation of the size of the deterministic problem, the
approach is also well suited for the numerical investi-
gation of structures, analyzed by finite element models

with a large number of degrees of freedom. However,
spatial fluctuations of the random field cannot be con-
sidered until now.

3. Divergence instability of an airfoil

The method is applied to the numerical investigation
of an airfoil with a length of 11.96 m, a width of 1.15 m
and a sweep angle of 58. The bending stiffness is EI =

2.78 � 106 Nm2 and the shear stiffness follows to GIT =
2.41 � 105 Nm2. The cantilever structure is investigated
numerically by means of a finite element discretization

of 40 elements, based on the Euler-Bernoulli beam and
St. Venant torsion theory. The aerodynamic coefficient
is approximately assumed to be ca = 2� [�], which can

be analytically derived as parameter for a plane plate.
Regarding these parameters, the deterministic analysis
gives a critical speed of u = 116.9 m/s.
Figure 1 shows approximated probability density

functions for the critical speed u, when random prop-
erties of the aerodynamic coefficients are taken into
account. As presented for a standard deviation of � =

0.2 [�], the spectral approach with a polynomial
expansion up to the fourth order yields a good
approximation for the probability density, compared to

the results from a Monte-Carlo simulation. Figure 2
demonstrates that naturally the probability densities for
u become more dispersed and skewed, if the standard

deviation of the random coefficient increases. In order to
approximate the tails of the probability density correctly
in case of a standard deviation of � = 0.4 [�], the
polynomial chaos expansion is increased up to the

seventh order. Furthermore, probabilities for chosen
limit values of the critical speed are evaluated from the
distributions, see Table 1. The probabilities give a

quantitative measure for the appearance of the
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divergence instability, thus allowing an estimation of the
reliability.

4. Conclusion

As demonstrated for the simple example of an airfoil,
the probabilistic characteristics of critical flight speeds

can be determined by means of a versatile method for
eigenvalue problems with random parameters. Time-
consuming computations, as compared to Monte-Carlo

simulations, can be avoided.
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Fig. 1. Probability density functions for critical speed, �= 0.2�.

Fig. 2. Probability density functions for critical speed, different

standard deviations �.

Table 1

Probabilities for critical speed

� = 0.1� � = 0.2� � = 0.4�

P(u � 100m/s) 	 0 	 0 0.033

P(u � 105m/s) 	 0 0.008 0.111

P(u � 110m/s) 0.004 0.094 0.253

P(u � 115m/s) 0.239 0.361 0.431

P(u � 120m/s) 0.836 0.688 0.598
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