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Abstract

The non-Gaussian Karhunen-Loève (K-L) expansion has been used to generate a non-Gaussian process using an
iterative scheme. Numerical results show that different non-Gaussian processes can be generated satisfying the same

prescribed covariance function and marginal distribution by changing the assumed starting distribution of the K-L
random variables. Non-Gaussian K-L processes produced by assuming an initial Gaussian distribution for the K-L
random variables appear to be translation processes. When the K-L random variables were assigned a lognormal

distribution before the iteration procedure, the resulting process is clearly non-translation. Hence, it would appear that
translation processes form a subset of K-L processes. In other words, the class of non-Gaussian K-L processes is larger
and potentially capable of providing better fit to observed data.
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1. Introduction

The non-Gaussian Karhunen-Loève (K-L) expansion
generates non-Gaussian processes based on prescribed
covariance function and marginal distribution. The key

feature of this technique is that the target covariance
function is maintained, while the probability distribu-
tions of the K-L random variables are updated

iteratively. In general, a non-Gaussian process cannot be
defined by the first two moments uniquely. The well-
known translation process [1] obtained via memoryless
transformation of a Gaussian process may not produce

a process that could match observed non-Gaussian data.
The non-Gaussian K-L expansion has the potential to

simulate different non-Gaussian processes satisfying the

same target covariance function and marginal distribu-
tion [2,3]. This is realized by assigning different
distributions to the K-L random variables during the

start of the iteration process (briefly described below).
This paper examines the differences between non-
Gaussian K-L and translation processes. The basic idea

is to back-translate the K-L process such that its mar-
ginal distribution is Gaussian and to verify the following
higher-order properties associated with a Gaussian

process: (i) covariance, (ii) rank correlation, (iii) up-
crossing rate, and (iv) multivariate Gaussianity.

2. Non-Gaussian Karhunen-Loève expansion

A random process $(x,�) defined on a probability

space (�, A, B) and indexed on a bounded domain x [
D, having mean $(x) and finite variance �2(x), can be
approximated using the following finite K-L expansion:

$Mðx; �Þ ¼ $ðxÞ þ
XM
i¼1

ffiffiffiffi
�i

p
�ið�ÞfiðxÞ ð1Þ

where �i and fi(x) are the eigenvalues and eigenfunctions

of the covariance function C(x1,x2), �i(�) is a set of
uncorrelated K-L random variables with zero mean and
unit variance, and M is the number of K-L terms.

If$(x,�) is a Gaussian process, then �i(�) is a vector of
uncorrelated standard Gaussian random variables. For
$(x,�) with an arbitrarily prescribed marginal distribu-
tion, the distributions of �i(�) are unknown. The

following iterative steps were proposed to compute these
unknown K-L distributions [4]:
1. Generate n sample functions of the non-Gaussian
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$
ðkÞ
M ðx,�mÞ ¼ $ðxÞ þ

XM
i¼1

ffiffiffiffi
�i

p
�
ðkÞ
i ð�mÞfiðxÞ;m¼ 1,2, . . . n

ð2Þ

where k = iteration number and m = sample

number.
2. Estimate the empirical cumulative marginal dis-

tribution function as:

F
_ ðkÞ
M ðyjxÞ ¼

1

n

Xn
m¼1

I $
ðkÞ
M ðx,�mÞ � y

� �
ð3Þ

where I(event) = indicator function = 1 if event is
true and 0 otherwise.

3. Transform each sample function to match the target

marginal distribution F:

�
ðkÞ
M ðx,�mÞ ¼ F�1F

_ðkÞ
M $

ðkÞ
M ðx,�mÞ

h i
ð4Þ

4. Estimate the next generation of �i(�) as:

�
ðkþ1Þ
i ð�mÞ ¼

1ffiffiffiffi
�i
p

Z

D

�
ðkÞ
M ðx,�mÞ � ��

ðkÞ
M ðxÞ

h i
fiðxÞdx

ð5Þ

5. Standardize �kþ1i ð�Þ to unit variance. Note that
�kþ1i ð�Þ is a zero-mean vector by virtue of Eq. (5). A
modified Latin hypercube orthogonalization techni-

que [4] is applied to reduce the product-moment
correlations between �kþ1i ð�Þ. This technique is
described below, assuming that the realizations of

�i(�) are stored in an n � M matrix X:
(i) Compute the M � M product-moment covar-

iance matrix of X:

T ¼ XTX

n� 1
� XTUUTX

nðn� 1Þ ð6Þ

where U is a n � 1 vector containing ones.

(ii) Obtain an uncorrelated realization matrix X0 by:

X0 ¼ XQ�1 ð7Þ

where QTQ = T

(iii) Re-order the realizations in each column of X to

follow the ranking of realizations in each col-
umn of X0.

6. Repeat steps (1) through (5) until the sample func-
tions achieve the target marginal distribution.

3. Are non-Gaussian K-L processes ‘translation’?

Although the translation method produces a large

class of non-Gaussian processes, it will be shown in the

next section that it is a special case of the K-L method.
In other words, the class of non-Gaussian K-L processes

is even larger and potentially capable of providing better
fit to observed data.
To demonstrate the above, the basic idea is to back-

translate the K-L process such that its marginal dis-
tribution is Gaussian and to verify the following higher-
order properties associated with a Gaussian process: (i)

covariance, (ii) rank correlation, (iii) up-crossing rate,
and (iv) multivariate Gaussianity.
For illustration, consider a standard Gaussian process

($g) with the following covariance function:

� x1,x2ð Þ ¼ e� x1�x2j j ð8Þ

A non-Gaussian process satisfying a prescribed marginal
cumulative distribution function F can be constructed

using the translation method [1]:

$ðxÞ ¼ F�1� ½$gðxÞ� ð9Þ

where � (�) denotes the cumulative distribution of the
standard Gaussian variate. A shifted exponential
cumulative distribution function is selected for F:

F y,�,�ð Þ ¼ 1� e�� y��ð Þ ð10Þ

The distribution parameters � = 1 and � = �1 are

selected to produce zero mean and the covariance of the
non-Gaussian translation process C(x1,x2) is [5]:

Cðx1; x2Þ ¼
Z 1
�1

Z 1
�1

F�1½�ðz1Þ�F�1½�ðz2Þ��½z1,z2;

�ðx1,x2Þ�dz1dz2 ð11Þ

where

�½z1,z2; �ðx1,x2Þ�

¼ 1

2�½1� �ðx1,x2Þ2�1=2
exp � z21 þ z22 � 2z1z2�ðx1,x2Þ

2½1� �ðx1,x2Þ2�

( )

ð12Þ

It is possible to simulate non-Gaussian K-L processes
satisfying F and C given by Eqs. (10) and (11), respec-
tively. If these processes are translation, the back-

translated process $b(x) = ��1F[$(x)] should produce
the covariance function given in Eq. (8) because
$b(x) = $g(x). This is the most direct check. In this

example, two K-L processes were simulated by assigning
the initial distributions of �i(�) to be Gaussian in the first
case and lognormal in the second case before applying
the iterative procedure outlined in Section 2. Note that

distributions of �i(�) are unknown a priori and should
not be confused with the marginal distribution of the
process itself, which is shifted exponential. The processes

are denoted by $i(x) for i = 1 and 2, and the
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corresponding back-translated processes are $bi(x).
Both processes are indexed over x [ [0, 1]. A finite K-L

expansion with M = 32 terms is used. Eigenvalues and
eigenfunctions were computed numerically using the
wavelet-Galerkin approach, based on 25 = 32 wavelet

basis functions [6]. The sample size is n = 10000, and 40
iterative steps are used.
Numerical results show that the covariance and

marginal distribution of the simulated processes almost
coincide with the respective targets, regardless of the
initial distribution assumption for the K-L random
variables (Gaussian or lognormal). This is to be expec-

ted if the iterative procedure is working correctly. The
maximum relative error for the covariance defined by
max
x1,x2
½jC

_

ðx1,x2Þ � Cðx1,x2Þj=Cðx1,x2Þ� (where C
_

ðx1,x2Þ is

the covariance of the simulated process) is 2.5 � 10�4

and 2.1 � 10�4 for $1(x) and $2(x), respectively. For
the marginal distribution, the maximum deviation
between F and empirical cumulative distribution func-

tion is 0.002 and 0.0029 for $1(x) and $2(x),
respectively.

Figure 1 compares the covariance functions of the
back-translated processes $b1(x) and $b2(x) with that of

$g(x). It is quite clear that $1(x) is translation, but
$2(x) is not. A closed-form relationship between the
rank (r) and product-moment correlation (�) exists for a
bivariate Gaussian random vector [7]:

� ¼ 2 sin
�

6
r

� �
ð13Þ

Figure 2 confirms that the rank correlations in $1(x) do
follow this relationship. The up-crossing rate shown in
Fig. 3 further supports the hypothesis that $b1(x) is

translation.

4. Multivariate Gaussianity

The principal component method [8] based on the

measure of skewness and kurtosis is used to test the
multivariate normality for $b1(x) and $b2(x). For a

Fig. 3. Up-crossing rates comparison.

Fig. 1. Covariance comparison.

Fig. 2. Rank correlation comparison.
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random p-vector � with mean vector � and covariance
matrix �, the measure of skewness (�21p) and kurtosis

(�2p), respectively, can be represented by:

�21p ¼ p�1
Xp
i¼1

E 
0i � � �ð Þ

 �3.

�
3=2
i

n o2

ð14Þ

�2p ¼ p�1
Xp
i¼1

E 
0i � � �ð Þ

 �4.

�2i

n o
ð15Þ

where �i are the eigenvalues and 
i are eigenvectors of �,
i = 1, 2, . . ., p. If � is a multivariate Gaussian random
vector, �21p =0 and �2p =3. For large sample size n, A=

(np/6)�21p is chi-square distributed with p degrees of
freedom and B = (np/24)1/2(�2p � 3) follows a standard
Gaussian distribution.

For $b1(x), �
2
1p =0.0011 and �2p =3.0114, producing

A = 58.8437 and B = 1.3153. For $b2(x), �
2
1p =1.6111

and �2p =11.2453, producing A = 85928, and B =
952.08. Using the chi-square distribution with 32 degrees

of freedom for the skewness statistics, the p-value for
$b1(x) is 0.0053 and $b2(x) is 0. The corresponding p-
value with respect to the kurtosis statistic for $b1(x) is

0.1884 and$b2(x) is 0. Given the results shown in Figs. 1
to 3, it is not surprising that $b2(x) is not a Gaussian
process. However, it is quite surprising that the skewness

statistic p-value for $b1(x) is small.

5. Conclusion

The non-Gaussian K-L expansion has the potential to
simulate different non-Gaussian processes satisfying the

same target covariance function and marginal distribu-
tion. This is realized by assigning different distributions
to the K-L random variables during the start of the

iteration process. Numerical results indicate that non-
Gaussian K-L processes produced by assuming an initial
Gaussian distribution for the K-L random variables

appear to be translation processes. When the K-L ran-
dom variables were assigned a lognormal distribution

before the iteration procedure, the resulting process is
clearly non-translation. Hence, it would appear that
translation processes form a subset of K-L processes. In

other words, the class of non-Gaussian K-L processes is
larger and potentially capable of providing a better fit to
observed data.
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