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Abstract

In this paper a general method of treating Hamiltonians of deformed nanoscale systems is proposed. This method is

used to derive a second-order strain Hamiltonian. As an example, energies for a one-dimensional strained Krönig–
Penney potential are calculated with exact, first-order, and second-order strain Hamiltonians.
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1. Introduction

Nanoscale semiconductor devices usually consist of
materials with different lattice constants, hence these
structures will be strained. It is known that strain

strongly affects the electronic and optical properties,
hence in order to be able to model these devices it is
important to account for strain effects. It is well known
how to incorporate homogeneous strain in electronic

bandstructure calculations [1], but in nanoscale hetero-
structures strain is no longer homogeneous. Zhang [2]
and Suzuki [3] have proposed two different methods to

include linear inhomogeneous strain terms in the
Hamiltonian under certain assumptions for the strain
and the potential. In this paper, a general method of

treating Hamiltonians of deformed nanoscale systems
(e.g. an inhomogeneous strained Hamiltonian) is pro-
posed based on a Taylor series expansion. The

methodology is explained on the example of the Krönig–
Penney model, and the results of the analysis of this
model with a higher-order Hamiltonian are compared
with those previously reported in the literature.

2. Theory

A deformation �: B ! R
3 of an underformed domain

B, e.g. a crystal volume, is a C2 map satisfying
inf(det(H�)) 6¼ 0. It is assumed throughout this paper

that B is compact. This ensures boundness of considered
operators, the derivatives of the deformation, and the

derivative of the inverse of the deformation. The space
of all deformations of B is denoted D, primed (0) coor-
dinates, functions, and operators always refer to the

domain B, while unprimed coordinates, functions, and
operators refer to the domain �(B) (see Fig. 1).
An electron in a potential deformed by � is subject to

the potential V(F), where F signifies that the potential

depends only on � through the deformation gradient
F = H0�. The Hamiltonian of the deformed system,
referred to as the deformed Hamiltonian, is then given

by:

HF ¼ �
�h2

2m
�þ VðFÞ ð1Þ

In what follows we assume that the domain of the
deformed Hamiltonian is the Sobolev space W2,2(�(B)).
In this way possible potentials also encompass dis-

tributions such as the Dirac-delta function (see Section
3).
From the inverse function theorem it follows that �

has a C2 inverse defined on �(B). This ensures that HH0�
can be written with respect to coordinates on B. As a
result, the deformed Hamiltonian can be viewed as an

operator

Ĥ : D ! LðW2,2ðBÞ, L2ðBÞÞ ð2Þ

given by � ! HH0�, where L(F , G) is the space of

bounded linear mappings from F to G and L2(B) is the
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Lebesgue space. The space D is equipped with the
supremum norm, W2,2(B) is equipped with the corre-

sponding Sobolev norm, and L(W2,2(B), L2(B)) is
equipped with the operator norm (e.g. [4,5]).
Since the undeformed potential is usually better

known than the deformed potential and the deformation
is known, it is more convenient to express the Hamil-
tonian in terms of these quantities. The easiest way to do

that is to make a Taylor series expansion of Ĥ around
the identity function on B denoted id. By noting that the
deformed Hamiltonian depends only on � through F, it
is found that the deformed Hamiltonian is to the second-

order in F given by

HF � HI þD
ð1Þ
F � ðF� IÞ þD

ð2Þ
F � ðF� I, F� IÞ ð3Þ

where

HI ¼ �
�h2

2m
�0 þ VðIÞ ð4Þ

D
ð1Þ
F � ðF� IÞ ¼ �h2

2m

X3
j¼1

X3
k¼1
½Fþ FT � 2I�jk

@

@x0j

@

@x0k
þ

(

X3
i¼1

X3
k¼1

@

@x0i
ð½F� I�kiÞ

@

@x0k

�
þDVðIÞ � ðF� IÞ ð5Þ

D
ð2Þ
F � ðF� I, F� IÞ ¼ � �h2

2m

X3
j¼1

X3
k¼1
½ðF� IÞðF� IÞT�jk

(

@

@x0j

@

@x0k
þ
X3
i¼1

X3
j¼1

X3
k¼1
½ðF� IÞ�ji

@

@x0j
ð½F� I�kiÞ

@

@x0k
:þ

X3
j¼1

X3
k¼1
½ðF� IÞ2 þ ðFT � IÞ2�jk

@

@x0j

@

@x0k
þ
X3
i¼1

X3
k¼1

@

@x0i
½ðF� IÞ2�ki

@

@x0k

�
þ 1

2
D2VðIÞ � ððF� IÞ, ðF� IÞÞ

ð6Þ

where I= H0id. The notations used are identical to those
in Marsden et al. [6]. This Hamiltonian is referred to as

the second-order strain Hamiltonian. The error

introduced by this approximation is known to be of the
third order in (F � I) (see, e.g. [7]).

The detailed derivation of this expression and the
inclusion of spin in the Hamiltonian is outside the scope
of this short communication and will be presented in a

forthcoming article. Under the assumption that the
deformation gradient F is symmetric and employing the
linear strain tensor, the first order Taylor expansion is

identical to the strain Hamiltonian derived by Zhang [2]
disregarding spin.

3. Strained Krönig–Penney potential

As an example of the applicability of the second-order
strain Hamiltonian, results for a one-dimensional

strained Krönig–Penney potential are presented here.
The unstrained Krönig–Penney potential is given by

VðIÞðx0Þ ¼ 3� �h2

2ma

X
N
n¼�N�ðx0 � naÞ ð7Þ

for x0 2 [�Na, Na] = B, where N 2 {N a 2]0, 1[ is the
lattice constant, and � is the Diracdelta function. In
addition to this, periodic boundary conditions are
imposed. Figure 2 shows the first three energy bands

obtained. Assuming that N/10 2 N, a strained Krönig–
Penney potential is found by deforming the above
potential by �ðx0Þ ¼ x0 þ "a sinð2�x0=10aÞ

where � 2]0, 1[ is the magnitude of the deformation. The
strain Hamiltonian is then given by

HF ¼ �
�h2

2m

@2

@x2
þ 3� �h2

2ma

XN
n¼�N

�ðx��ðnaÞÞ ð8Þ

Fig. 2. Energy bands for the unstrained Krönig–Penney

potential.

Fig. 1. A sketch of a deformation with related operators and

functions used.
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The problem of finding the energy eigenvalues and
associated eigenfunctions of this Hamiltonian is

straight-forward and it reduces to the problem of solving
a nonlinear equation.

The second-order strain Hamiltonian is found by

using the deformation to transform the strain Hamilto-
nian into an operator with functions defined on B as
domain and then making the Taylor expansion. For the

potential in Eq. (8) it is found that

VðFÞðx0Þ ¼ 3� �h2

2ma

XN
n¼�N

�ð�x0Þ � �ðnaÞÞ ¼ 3� �h2

2ma

XN
n¼�N

�ðx0 � naÞ
FðnaÞ ð9Þ

where Fðx00Þ ¼ @�=@x0 x00
			 ¼ 1þ 2��=10 cos ð2�x00=10aÞ:

Notice that in this example F is always positive. The
second-order strain Hamiltonian is then given by

HF � �h2

2m
�1þ 2ðF� 1Þ � 3ðF� 1Þ2
� � @2

@x02

þ �h2

2m

@ðF� 1Þ
@x0

� ðF� 1Þ @ðF� 1Þ
@x0

� @ðF� 1Þ2

@x0

 !
@

@x0

þ 3� �h2

2ma

XN
n¼�N

ð�ðx0 � naÞ ð1� ðF� 1Þ þ ðF� 1Þ2ÞÞ ð10Þ

The solutions to the eigenvalue equation for this
Hamiltonian were found using the finite element

method. In Fig. 3 results are shown for the unstrained,
strained exact, strained first-order, and strained second-

order Taylor expansions for �= 0.2. Here it is seen that
there is almost no difference between the second-order

and the exact energy bands, whereas there are clear
differences between the first-order and the exact energy
bands. To make this comparison more precise calcula-

tions were made for different � values at the zone center.
In Fig. 4 the difference between the energy of the first
state calculated with the exact Hamiltonian and the first-

order and second-order approximations is shown as a
function of � and the maximal Green-Lagrange-St.
Venant strain. The errors of the first and the second-
order Hamiltonians are given by

Errorx ¼ EExact
1 � Ex

1

EExact
1

				
				, x ¼ 1st; 2nd ð11Þ

where EExact
1 , E1st

1 and E2nd
1 are the energy of the first

state calculated with the exact, first-order, and second-
order Hamiltonians, respectively.
The Green-Lagrange-St.Venant strain is given by

Eðx00Þ ¼
1

2
ðFðx00Þ

TFðx00Þ � IÞ ¼ 2�"

10
cos

2�

10a
x00

� �

1þ �"
10

cos
2�

10a
x00

� �� �
ð12Þ

i.e. the maximal strain is given by 2�"
10 ð1þ �"

10Þ.
From Fig. 4 it can be seen that both the first-order

and second-order approximations are quite accurate up
to a max strain of 7% as the error is less than 1%. It is of
particular interest to note that the second-order
approximation has an error of less than 1% for

Fig. 3. Energy bands for the strained Krönig–Penney potential for � = 0.2.
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situations with a max strain of up to 18%. This clearly
demonstrates that the range of applicability for the
second-order approximation is substantially larger than

it is for the first-order approximation.

4. Conclusion

In this paper a general method for treating Hamilto-
nians of deformed nanoscale systems has been proposed
based on a Taylor series expansion. This method was

employed to find the second-order strain Hamiltonian.
As an example, the electronic energies of a one-dimen-
sional strained Krönig–Penney potential were presented

for exact, first-order, and second-order strain Hamilto-
nians. Our results show that the second-order strain
Hamiltonian can be applied to the band structure ana-
lysis with the Krönig–Penney model at least for a

maximum strain of up to 18% giving an error of less
than 1%.
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Fig. 4. Error of the first-order and second-order strained
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