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Abstract

Acceleration response spectra (ARS) for mining tremors in the Upper Silesian Coalfield are generated using artificial

neural networks trained by means of Kalman filtering. The target ARS were computed on the basis of measured
accelerograms. It was proved that the recurrent layered network, trained by the recurrent decoupled extended kalman
filter (RDEFK) algorithm is numerically much more efficient than the standard feed-forward NN learnt by DEKF. It is

also shown that the considered KF algorithms are better than the traditional Rprop learning method.
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1. Introduction

Response spectra caused by paraseismic excitations
(in the paper, mining tremors only are analyzed) are

used for the design of buildings in mining regions, as
well as for evaluation of damage resistance of actual
buildings [1]. The monitoring of paraseismic excitation
at every building is impossible so either recommended

design response spectra or average response spectra,
computed an the base of earlier measured accelerograms
at the buildings, are used.

In recent years artificial neural networks (ANNs) have
been applied for the computation of acceleration
response spectra (ARS) [2–4]. An attempt to predict

ARS in two Polish mining regions was carried out by
Kuzniar et al. [1]. Corresponding ANNs were designed
on the base of accelerograms of the surface waves

measured on the ground level at selected buildings for
known values of epicentre distances and energy of
mining tremors.

The analysis of this problem was developed by Krok

et al. in [5], where the Kalman filtering (KF) was
introduced as a refined learning method of the feed-
forward multilayer perceptron, using the DEKF

algorithm.
The present paper is a continuation of [5]. Instead of

DEKF, its modification, recurrent DEKF (RDEKF) is

applied. The modification is coupled with a recurrent-

layer version of Elman [6], called RLNN. Similarly, as in
[5], an autoregressive (time-delayed) input is used and
the training and testing patterns are based on the records

measured in the Upper Silesian Coalfield (USC),
Poland.

2. Neural Kalman filter

2.1. Network architectures

Basic equations and algorithms of Kalman filtering,

used for ANN training, correspond to the NN archi-
tecture. Following Haykin et al. [7], two architectures,
related to the standard feed-forward layered network
FLNN (multilayer perceptron) and the recurrent layered

network RLNN (Fig. 1), are considered.

2.2. Kalman filtering

Extended KF is based on two equations [7]: (1) pro-
cess equation, and (2) measurement equation, modified

for using in RLNN into the following form:

fwiðkþ1Þ; viðkþ1Þg ¼ fwiðkÞ,viðkÞgþ!ðkÞ ð1Þ
yðkÞ ¼ hðwðkÞ;vðkÞ,xðkÞÞþ�ðkÞ ð2Þ

where k is the discrete pseudo-time parameter; i is the

number of neurons in ANN; w (k) = {wi (k), vi (k) i= 1,
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2, . . . , n} is the state vector (one-column matrix) cor-
responding to the set of vectors, w, of synaptic weights

and biases, and neuron outputs, vi, for n neurons of NN;
h is the nonlinear vector-function of input–output rela-
tion; x, y are the input/output vectors and ! (k), � (k)

the Gaussian process and measurement noises with zero
mean and known covariance matrices. The term
‘extended KF’ (EKF) is used because a nonlinear out-

put–input relation is considered in (2) by the
introduction of the vector-function h.

2.3. Algorithms RDEKF and DEKF

The algorithm is called ‘recurrent’ because the time-
delay internal input vk�1 is used in the network shown in

Fig. 1(b). Decoupling is performed with respect to each
neuron i = 1, 2, . . . , n. The algorithm RDEKF was
formulated in [7] on the base on Eqs. (1) and (2) as a

modification of algorithms given in [5].
An essential problem of the RDEKF algorithm is the

computation of matrix Hrec
i of recurrent linearization,

computed at {wi, vi}, where: wi(k), vi(k) are a priori
estimators. The linearization in the present paper was
performed by the back-propagation in time procedure.
The algorithm DEKF, related to the feed-back layer

network (FLNN), Fig. 1(a), can be easily formulated as
a special case of RDEKF. This is caused by canceling of
the feed-back links vi (k) in Eqs. (1) and (2).

3. Surface vibrations from mining tremors in USC region

The accelerograms of surface waves were taken from
USC region in Poland and corresponding values of the
tremor energy E [ [2.104, 4.106] J and epicentre distance

re [ [0, 1200] m evaluated by seismic stations situated
nearby.

The dimensionless ARS were computed in [1], using
the definition � (T) = Sa (T; E, re)/amax, where: Sa [m/s2]
are computed ARS; amax[m/s2] = maxta(t) is maximal

acceleration, and T(t)[s] =1/f(t) is the period of vibra-
tion for natural frequency f(t) [Hz].
A set of 145 ARS was taken from [10] in discretized

form �k = � (Tk) for pseudo-time parameters k =1, 2,
. . ., 198. This makes a set of P = 145�198 = 28710
patterns. The same sets composed of ARSL = 113
spectra and ARST = 32 spectra, corresponding to those

randomly selected in [1] were used for the networks
learning and testing, respectively. This made L =
113�198 = 22374 and T = 32�198 = 6336 patterns,

correspondingly.

4. Neural analysis

4.1. Application of RDEKF and DEKF algorithms

The input vector x ={�k�1, E, re} and scalar output
y = �k � � (Tk) were adopted. The inputs E and re were

transformed by the function ln and then all inputs and
outputs were scaled to the range [0,1]. The training was
performed by our own computer simulator written in

MATLAB language and KF procedures written in
C++. After extensive numerical experiments the net-
work of architecture RLNN: 3–15–1 was designed,

assuming bipolar sigmoidal activation function in neu-
rons of the hidden layer and identity activation function
for the output.

Fig. 1. Multilayer NNs with an autoregressive input yk�1: network FLNN with only feed-forward transmission of signals (a) and

recurrent network RLNN with internal time-delay connection (b).
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The training process was controlled by decrease of the
MSEV error:

MSEVðsÞ ¼ 1

V

XV
p¼1
ð �dp � �ypÞ2 ð3Þ

where: s is the number of epoch; V= L, T is the number
of patterns in the training or testing sets, respectively

and �dp,�yp are the target and computed output values for
pth pattern. The corresponding MSE errors and statis-
tical parameters are listed in Table 1. The obtained
errors are significantly smaller than those computed in

[9] by the feed-forward network FLNN. In Table 1 it
can be seen that using the RDEKF algorithm in network
RLNN after S= 24 epochs, the admissible error �adm =

1�10�4 is attained.
Fig. 2 shows selected spectra computed by the recur-

rent network using RDEKF algorithm and by feed-

forward network learnt by DEKF (training spectrum
No.113 is denoted by ARS l #113 and testing spectrum
No.11 as ARS t #11). It can be seen that these spectra

have shapes similar to the graphics of target spectra
(ARS computed from measured accelerograms). Nearly
all the neurally computed spectra give the approximation

of target curves from below if DEKF was applied. In the
case of the RDEKF this conclusion is valid for low

values of vibration periods (in a very non-smooth part
of ARS graphics).
The neural predictions of the target spectra discussed

above are shown in Fig. 3 for the two testing spectra,
Nos. 5 and 17. They are shown for the range Tk [ [0.02,
0.308] s that corresponds to frequencies fk [ [3.25, 50]

Hz. These ranges cover spectra of medium-height flat
buildings analyzed in Ciesielski et al [8]. On the base of
measurements carried out at 13 five-storey buildings of
various construction types the basic vibration periods

were computed for the range [0.155, 0.294] s.

4.2. Application of Rprop learning method

In order to compare numerical efficiency of Kalman
filtering the computation was also performed by a tra-
ditional learning method. Following [1] the resilient-
propagation (Rprop) method and MATLAB neural

network toolbox [9] was used in the training of the same
networks FLNN and RLNN of structure 3–15–1. In the
case of RLNN the Rprop used in [1] was modified in [5]

Table 1

Errors and statistical parameters for networks FLNN and RLNN

Errors MSEV�103 Statistical parameters

Network (algorithms) Numbers of epoch S L T rT St "T

RLNN 24 1.01 0.88 0.9861 0.2114

(RDEKF) 100 0.41 0.37 0.9874 0.1381

FLNN 188 1.00 1.17 0.9877 0.2445

(DEKF) 500 0.87 1.02 0.9877 0.2282

RLNN 1000 0.42 0.46 0.9870 0.1535

(RpropR) 10000 0.40 0.45 0.9877 0.1519

FLNN 1000 0.57 1.20 0.9683 0.2509

(Rprop) 10000 0.42 0.56 0.9845 0.1681

Fig. 2. Target and neurally computed spectra for selected accelerograms from the training set (#113) and testing set (#11).
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to procedure Rprop-R in order to take into account the
time-delay link vi (k). Table 1 shows errors computed for

the number of epochs S = 10000. It can be seen that
there are not great differences in errors obtained in
networks RLNN and FLNN trained by means of

Rprop.
In [1] the network FLNNs without the autoregressive

input were applied (instead of �k�1 the input Tk was

used). Despite much bigger networks the neural
approximation was much worse than in the case of the
FLNN with the autoregressive input.
To end the discussion it should be said that the Kal-

man filtering, used as a new learning method, is time
consuming. When applying DEKF and 100 epochs the
CPU time was about 38% higher than the time needed

to carry out 10000 epochs using the Rprop learning
method.

5. Final conclusions

1. The Kalman filtering method of network learning

enables us to increase accuracy of neurally predicted
ARS from mining tremors.

2. Formulation of RDEKF algorithm for the learning

of the recurrent layered NN appears to be much
more numerically efficient than using DEKF in the
feed-forward layered NN.

3. Introducing the autoregressive input (time-delayed
input) significantly improves the speed-up of the
training process

4. An interesting feature of neural prediction related to
the approximation of a part of target ARS from
below and above needs further research.
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Fig. 3. Target and neurally computed spectra for the selected testing accelerograms #5 and #17.
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