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Abstract

This paper is concerned with a piezoelectric solid shell finite element formulation. A geometrically non-linear theory

allows large deformations and includes stability problems. The finite element formulation is based on a variational
principle including six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and
dielectric displacements. The element has 8 nodes; the nodal degrees of freedom are displacements and the electric

potential. To obtain correct results in bending-dominated situations a linear distribution through the thickness of the
independent electric field is assumed. The presented finite shell element is able to model arbitrary curved shell structures
and incorporates a 3D-material law. As numerical example a piezoelectric buckling problem is presented.
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1. Introduction

In this paper a piezoelectric solid shell element is
developed. In recent years several new elements have
been proposed. Some of these model a reference surface
of the shell structure, see e.g. [1,2]. With respect to the

laminated structure of piezoelectric devices a more or
less sophisticated laminate theory is necessary. The so-
called solid shell elements circumvent laminate theories

by modelling each ply with one element, see e.g. [3].
The above cited piezoelectric shell formulations

assume a geometrically linear theory. In [4] it is pointed

out that nonlinear characteristics can significantly
influence the performance of piezoelectric systems. In
particular this holds for buckling of plates. The most

nonlinear piezoelectric plate formulations e.g. [4,5] use
von Karman plate theory, which represents a nonlinear
theory of lowest order and does not account for all
geometric nonlinearities.

Usually the electric potential inside the piezoelectric
model is assumed to be linear through the shell thick-
ness. To fulfill the electric charge conservation law

exactly a quadratic electric potential through the thick-
ness is necessary. A quadratic approximation was

introduced for shell elements in [1,2] and leads in general
to an additional degree of freedom.

In this paper a mixed formulation is proposed.
Recently a geometrically linear hybrid formulation was
introduced in [3], where stresses, displacements, and the
electric potential are considered in the variational

formulation.
The essential features and novel aspects of the present

element are summarized as follows:

. The mixed finite element formulation is based on a
variational principle including six independent field
variables, which are displacements, electric potential,

strains, electric field, stresses, and dielectric
displacements.

. The electric field is assumed to be linear through the

shell thickness, which fulfills the electric charge
conservation law in bending dominated situations
exactly.

. A solid shell element with 8 nodes and 4 nodal

degrees of freedom is presented. Internal degrees of
freedom are eliminated by a static condensation on
element level.

. A complete geometrically non-linear theory is con-
sidered. It allows large deformations and accounts
for stability problems.
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2. Gradient fields

In this section the Green–Lagrangean strains and the
electric field are derived in convective co-ordinates. The
parameter �3 is defined as thickness co-ordinate and �1,
�2 as in-plane co-ordinates of the considered shell for-
mulation. The position vector of the reference
configuration B0 and the current configuration Bt are
denoted by X and x = X + u, where u is the displace-
ment vector. The covariant tangent vectors are defined
as:

Gi ¼
@X

@�i
, gi ¼

@x

@�i
, i ¼ 1; 2; 3 ð1Þ

Introducing the metric coefficients gij = gi � gj and Gij =
Gi � Gj the Green–Lagrangean strain components read:

Eij ¼
1

2
ðgij � GijÞ ð2Þ

and are arranged in a vector Ecova = [E11, E22, E33, 2E12,
2E13, 2E23]

T

Introducing

Ts =

ðJ11Þ2 ðJ12Þ2 ðJ13Þ2 2J11J12 2J11J13 2J12J13
ðJ21Þ2 ðJ22Þ2 ðJ23Þ2 2J21J22 2J21J23 2J22J23
ðJ31Þ2 ðJ32Þ2 ðJ33Þ2 2J31J32 2J31J33 2J32J33
J11J21 J12J22 J13J23 J11J22 þ J12J21 J11J23 þ J13J21 J12J23 þ J13J22
J11J31 J12J32 J13J33 J11J32 þ J12J31 J11J33 þ J13J31 J12J33 þ J13J32
J21J31 J22J32 J23J33 J21J32 þ J22J31 J21J33 þ J23J31 J22J33 þ J23J32

2
6666664

3
7777775

ð3Þ

with Jik = ti � Gk and t1 ¼ G1

G1k k , t2 ¼
G3�G1

G3�G1k k ,
t2 ¼ t1 � t2, the transformation to the local orthonormal
basis system ti is given as E = Ts�1 Ecova

The covariant components of the electric field are also

arranged in a vector ~Ecova = [~E1, ~E2, ~E3]
T with

~Ei ¼ �
@’

@�i
ð4Þ

where ’ denotes the electric potential. With the Jacobian
matrix

J ¼
J11 J12 J13
J21 J22 J23
J31 J32 J33

2
4

3
5 ð5Þ

the transformation to the local orthonormal basis sys-
tem is determined by ~E = J�1 ~Ecova

The strains and the electric field are arranged in the
vector

" ¼ E
~E

� �
ð6Þ

3. Constitutive equations

The relation between stresses, dielectric displace-
ments, strains, and the electric field is assumed to be:

� ¼ D" ð7Þ

In Eq. (7) the vector � is defined as � = [S, �~D]T, where

S is the stress vector and ~D the vector of dielectric dis-
placements. The constant material matrix D is given as:

D ¼ C �e
�eT ��

� �
ð8Þ

where C is the elasticity matrix, e is the piezoelectric
matrix and � the permittivity matrix. The stored energy

function is defined as:

W0 ¼
1

2
"TD" ð9Þ

4. Variational formulation

In this section a variational functional of the Hu-
Washizu type with six independent fields is introduced

as:

�ðu; ’; �" ; ~�Þ ¼
Z
B0

W0ð �"Þ � ~� � ð �" � "Þ dV

�
Z
B0

b � u dV�
Z
@tB0

t � u dA

þ
Z
@qB0

q’ dA ð10Þ

where:

~� ¼
~S

� ~~D

" #
, �" ¼

�E
�~E

" #
ð11Þ

are functions of the independent quantities ~S,
~~D, �E, and

�~E. The body force b is defined in the reference config-
uration B0 and t is the prescribed traction vector on the

boundary @tB0. The electric surface charge q is pre-
scribed on the boundary @qB0. Let U := {�u [ [H1(B0)]3
�uj@uB0 = 0} be the space of admissible displacement

variations and V := {�’ [ [H1(B0)]3 �’j@’B0 = 0} be the
space of admissible electric potential variations. Further
let ~S = �" = [L2(B0)] be the spaces of admissible var-

iations of the variables �" , ~� . The first variation reads:
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�� ¼
Z
B0

� �" � @W0

@ �"
� ~�

� �
dVþ

Z
B0

� ~� � "� �"ð Þ dV

þ
Z
B0

� " � ~� � �u � b dV ð12Þ

�
Z
@tB0

�u � t dAþ
Z
@qB0

�’ q dA ¼ 0

The variation of the strains and the electric field result in

�Eij ¼
1

2

�u

�i
� gj þ gi �

�u

�j
Þ, �~Ei ¼

�’

�i

�
ð13Þ

The weak form is solved iteratively within the finite

element method by employing Newton–Raphson’s
method. This requires the linearization of Eq. (12),
which reads:

D½��� � ð�u; �’, � �" , � ~�Þ ¼
Z
B0

� �" � @@W0

@ �" @ �"
� �"

�� �" �� ~� dV

þ
Z
B0

� ~� ��" � � ~� �� �" dV

ð14Þ

þ
Z
B0

� " �� ~� þ ~� ���" dV

with��" ¼ ½��ET, 0�Tand��Eij ¼ 1
2

�u
�i � �u�j þ �u

�i � �u�j
� �

5. Finite element approximations

The finite element approximation is constructed in the
sense that the whole domain is divided in element

domains with B ¼ [nelme¼1 Be, where nelm is the total
number of elements. The geometry, displacements and
electric potential are approximated as:

Xh
e ¼

X8
I¼1

NIXI, uhe ¼
X8
I¼1

NIuI, ’h
e ¼

X8
I¼1

NI’I ð15Þ

with the same interpolation function

NI ¼
1

8
ð1þ �1I �1Þð1þ �2I �2Þð1þ �3I �3Þ, � 1 � �i � þ1

ð16Þ

at the node I = 1,2,3, . . ., 8. The vectors XI, uI contain

the nodal co-ordinates and the nodal displacements,
respectively. Arranging NI in the matrix N = [N1, N2,
N3, N4, N5, N6, N7, N8] with NI = diag[NI, NI, NI, NI],

the virtual displacements and the electric potential are
interpolated as:

�uhe
�’h

e

� �
¼ N�� e ð17Þ

where �T
e ¼ ½�T

1 , �
T
2 , �

T
3 , . . . , �T

8 � is the nodal vector
with �T

1 ¼ ½u1, u2, u3, ’�
T
I

The approximation of the virtual gradient field " reads

�"he ¼ B �� e ð18Þ

with B ¼ ½B1, B2, B3, B4, B5, B6, B7, B8� and

BI ¼
Bu
I 0

0 B�I

� �

The matrix Bu
I is defined in [6] by employing some

assumed natural strain interpolations. The matrix B�I at

the node I is given as:

B�I ¼ J�1
NI,�1
NI,�2
NI,�3

2
4

3
5 ð19Þ

In the linearized weak form Eq. (14) the quantity ��E :
~S appears, which is approximated as:

ð��E : ~SÞh ¼ ��T
e G�� e ð20Þ

where the matrix G is also given in [6].

The independent field �" is approximated with the
following interpolation:

�"he ¼M�� with M� ¼
NE ME 0 0

0 0 N~E M~E

� �

and � 2 R
40 ð21Þ

The matrices NE, ME are given in [6], whereas the
matrices N~E, M~E are defined as:

N~E ¼ JT0

1 0 0 �2 �3 �2�3 0 0 0 0 0 0
0 1 0 0 0 0 �1 �3 �1�3 0 0 0
0 0 1 0 0 0 0 0 0 �1 �2 �1�2

2
4

3
5

ð22Þ

M~E ¼
det J0

det J
J�10

0 0 0
0 0 0
�3 �1�3 �2�3

2
4

3
5 ð23Þ

The Jacobian with the index 0 is evaluated at the element
center. According to Eq. (23) the approximation of the

electric field ~̂E is a bi-linear function through the
thickness. The approximation of the independent field ~�
is defined as:

~�h
e ¼M�� with M� ¼

NS 0
0 N~E

� �
and � 2 R

30

ð24Þ

For the matrix Ns see [6]. Considering the above inter-
polations in Eqs. (12) and (14) one obtains the following

matrices:
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Ae ¼
Z
Be
MT

�D M� dVe Ce ¼
Z
Be

MT
�M� ð25Þ

Le ¼
Z
Be

BTM� dVe Ke ¼
Z
Be
G dVe

and vectors

ae ¼
Z
Be
MT

�ð� � ~�Þ dVe be ¼
Z
Be

MT
� ð" � �"Þ dVe

f inte ¼
Z
Be

BT ~� dVe f exte ¼
Z
Be

NT ~p dVe

þ
Z
@Be

NT ~tdAe ð26Þ

In Eq. (26) the body and surface loads are determined by
~pT = [bT, 0] and ~tT = [tT, q]. With respect that Eq. (12)

is solved iteratively with Newton’s method, the follow-
ing approximation on element level is obtained:

½��þD½��� � ð�u; ��; � �" ; � ~�Þ�he )

�� e

�� e

�� e

2
4

3
5
T

f inte � f exte
ae
be

2
4

3
5þ

Ke 0 Le

0 Ae �Ce

LT
e �CT

e 0

2
4

3
5 �� e

�� e

�� e

2
4

3
5

0
@

1
A

ð27Þ

Taking into account that the finite element interpola-
tions for the fields �" , ~� are discontinuous across the
element boundaries, a condensation on element level

yields the element stiffness matrix and the right-hand
side:

KTe ¼ Ke þ LeðCT
e A
�1
e CeÞ�1LT

e

fe ¼ f exte � f inte � LeðCT
e A
�1
e CeÞ�1ðCT

e A
�1
e ae þ beÞ

ð28Þ

After assembly over all elements KT ¼ Anelm
e¼1 KTe,

�V ¼ Anelm
e¼1 �� e and P ¼ Anelm

e¼1 fe one obtains

KT�V ¼ P ð29Þ

with the unknown incremental nodal displacements and

the electric potential. The update of the internal degrees
of freedoms reads

�� e ¼ ðCT
e A
�1
e CeÞ�1ðLT

e �� c þ CT
e A
�1
e ae þ beÞ

�� e ¼ A�1e ðCe��e � aeÞ ð30Þ

6. Numerical example

In this example the buckling behavior of a piezo-
electric plate loaded by an electric field is analyzed. A

square plate consisting of six layers is considered; the
layup and the geometry data of the plate are given in
Fig. 1. The principal directions of the graphite epoxy
plies lie in the X1-X2 plane. Here the angle is introduced

with respect to the X1 axis.
The elastic material data for graphite epoxy is deter-

mined by the Young’s moduli E1 = 132.4 GPa, E2 =

E3 = 10.8 GPa, Poisson ratios �12 = �13 = 0.24, �23 =
0.49 and the shear moduli G12 = G13 = 5.6 GPa, G23 =
3.6 GPa. According to [5] PZT 5 is characterized with

respect to the co-ordinate system given in Fig. 1 by the

Fig. 1. Finite element model of the laminated square plate with loading and boundary conditions.
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elasticity constants E1 = E2 = 62 GPa, E3 = 54 GPa,
�12 = �13 = �23 = 0.31, G12 = G13 = 23.6 GPa, G23 =
18 GPa; by the piezoelectric coefficients d31 = d32 =

�220 pm/V, d33 = 440 pm/V, d25 = d16 = 670 pm/V;
and by the electric permittivity �11 = �22 = �33 =
22.9923 nF/m, where the values E3, d33 are assumed.
Plate buckling based on piezoelectric effects is

observed by increasing the electric potential ’ up to a
critical value. The first four buckling modes are calcu-
lated and shown in Fig. 2. The corresponding critical

values of ’ are listed in Table 1. The good agreement
with [5] of the critical electric potentials calculated with
the present element is noted.

One possible application of the described buckling
behavior could be a switch device. In addition to [5] we
introduce such a device, in which the geometry of the
considered plate is slightly modified by reducing the

thickness of the upper piezoelectric layer to 0.249 mm.
This geometrical imperfection initializes the buckling
direction, thus the stability problem becomes a pure

bending problem. In Fig. 3 the electric potential ’ is
plotted versus the vertical deflection at the center point
of the plate. An increasing load from ’ = 60 V to ’ =

120 V leads to a large change in the displacement

response u3 = 0.002 mm to u3 = 0.731 mm. This effect
may be utilized for a switching device.

7. Conclusion

In this paper a geometrically nonlinear solid shell
element to analyze piezoelectric structures is presented.
The mixed formulation fulfills the electric charge con-

servation law exactly. A numerical example
demonstrates the applicability to piezoelectric buckling
problems.
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Fig. 3. Load deflection curve and plots of the vertical deflection at characteristic points.
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