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Abstract

The paper deals with aspects of anisotropic elastoplastic analysis at finite strain. The material model is based on the
multiplicative decomposition of the deformation gradient. An anisotropic elastic constitutive law, described in invariant

setting by the use of structural tensors, is presented. An anisotropic Hill-type yield criterion, described by an Eshelby-
like stress tensor and further structural tensors, is developed. It considers nonlinear isotropic hardening as well. Explicit
results for the specific case of orthotropic anisotropy are given. An accurate and trivial wise objective integration

algorithm employing the exponential map is given. The numerical example demonstrates the influence of anisotropy on
the elastoplastic deformation process as well as the robustness and accuracy of the proposed formulation.
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1. Introduction

In recent years, the topic of anisotropic inelasticity at
finite strains has been attracting considerable attention
because of its relevance to the deformation of structural

components and the many still open questions encoun-
tered in its modelling and computation. Anisotropic
material responses arise from the micro structure of the
material and it can be described by different constitutive

laws. Generally, constitutive laws can be divided into
two classes: those related to the thermodynamical forces,
where the constitutive law can be defined through a

thermodynamical potential; and those related to the
evolution of the internal variables. Perhaps the most
popular example of an anisotropic constitutive law is

Hill’s yield criterium [1]. In the small strain regime,
inelasticity is based on the additive decomposition of the
strain tensor and, accordingly, the formulation of the
anisotropy does not cause significant difficulties, de

Borst et al. [2]. Such additive decompositions can be
extended to the large strain regime resulting in a rather
simple formulation of anisotropy as shown by Papado-

poulos et al. [3] and Schroeder et al. [4]. However,

successful additive decompositions can be expected only
if the logarithmic strain measure is employed.

The multiplicative decomposition of the deformation
gradient may be faced with a variety of problems. The
work of Sansour et al. [5] deals with the implications of

the multiplicative decomposition of the deformation
gradient within an anisotropic elastic constitutive law
for viscoplastic materials. The same decomposition was
also employed in an anisotropic formulation of elasto-

plasticity at large strains presented by Eidel et al. [6].
However, the authors made certain simplifications in the
definition of the orthotropic yield function and

employed a numerically derived tangent modulus leav-
ing issues related to the consistent tangent modulus not
addressed.

This contribution presents a theoretical model of
anisotropic inelasticity and a corresponding numerical
implementation where the multiplicative decomposition
of deformation gradient is employed. Anisotropy is

encountered in the elastic constitutive law as well as in
the yield function. Specifically Hill’s anisotropic yield
function is modified so as to fit into the material frame

of the theoretical formulation. Following the work of
Sansour et al. [7] the anisotropic form of the free energy
function is achieved using a set of invariants to depend

on the so-called structural tensors and a right Cauchy–
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Green type tensor. The structural tensors represent the
privileged material directions which are not altered

during the deformation process. The anisotropic yield-
ing response is described using a quadratic form of the
yield function to depend on a certain set of invariants.

These invariants are functions of a deviatoric material
Eshelby-like stress tensor and the structural tensors.
Explicit results are given for the specific case of ortho-

tropic anisotropy, where a nonlinear isotropic hardening
response is also considered. The efficiency of the pro-
posed algorithms are demonstrated by a numerical
example.

2. Constitutive relations and numerical formulation

For the description of inelastic deformation, the well
established multiplicative decomposition of the defor-
mation gradient in an elastic part, Fe, and in an inelastic

part, Fp, is assumed:

F ¼ FeFp ð1Þ

On the basis of the above decomposition, the following

deformation tensors of the Cauchy–Green type are
defined:

C ¼ FTF; Ce ¼ FT
e Fe; Cp ¼ FT

p Fp ð2Þ

where C and Cp constitute material tensors, and Ce is

Table 1

Constitutive equations

Dissipation inequality:

D ¼ � : L� � @ 

@Ce

_Ce �
@ 

@Z
_ZÞ � 0

�
ð3Þ

Decomposition of the free energy:

 ¼  e þ  p ð4Þ

Elastic free energy:

 e ¼
X3
i¼1

�iJi þ �ðiþ3ÞJ2i þ �ðiþ9ÞJðiþ3Þ þ
1

2

X3
j¼1

�ðiþjþ4ÞJiJj

" #
; for i 6¼ j ð5Þ

Elastic anisotropy invariants:

Ji ¼ tr iMeð ÞCe½ �; Jðiþ3Þ ¼ tr iMeð ÞC2
e

� 	
; i ¼ 1; 2; 3 ð6Þ

Structural tensors at anisotropic elastic constitutive law:

iMe ¼ ive � ive; i ¼ 1; 2; 3 ð7Þ
where ive are privileged material directions.

Reduced dissipation inequality:

Dr ¼ � : Lp þ Y � _Z � 0 ð8Þ

Eshelby’s stress tensor:

� ¼ 2�CF�1p

@ 

@Ce

F�Tp ; ð9Þ

� ¼ 2�
X3
i¼1

@ 

@Ji
CC�1p ði �MeÞ þ

@ 

@Jðiþ3Þ
ðCC�1p ði �MeÞCC�1p

�(

þCC�1p CC�1p ði �MeÞÞ
io

ð10Þ

Modified structural tensor:

ði �MeÞ ¼ FT
p ðiMeÞF�Tp ; i ¼ 1; 2; 3 ð11Þ
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given with respect to the so-called intermediate
configuration.

The basic constitutive equations are presented in

Tables 1 and 2. In Table 1 the anisotropic elastic con-
stitutive law, described by the elastic free energy
function  , is presented. It also includes an expression

for the dissipation in equality defined in a material set-
ting. Herein, Y represents isotropic hardening with the
energy conjugate internal variable Z, L is the right rate
of the deformation gradient, �1–�12 are material con-

stants, Lp is the right rate of the inelastic deformations
and � is the density at the reference configuration.

The orthotropic yield function and evolution equa-

tions are presented in Table 2. Herein, �o11 and �1–�9 are
the material constants, H is the linear isotropic hard-
ening parameter, �1 is the saturation yield stress, � is a

constitutive parameter quantifying the rate at which the

saturation yield stress is attained during loading, and �
denotes the plastic multiplier.
The integration of the presented evolution equations

is performed using the well-known predictor-corrector
computational strategy [8]. The exponential map is used
for updating the inelastic part of the deformation gra-

dient and it ensures the fulfillment of the
incompressibility condition of the inelastic deformation.
Accordingly, the plastic parts of the deformation gra-
dient at time step tn+1 may be expressed as

F�1p
nþ1
¼ expð��T LpÞF�1p

���
���
n

ð21Þ

By inserting the update relations of the state variables
in the yield function, a nonlinear scalar equation for the

plastic multiplier is obtained. It has to be solved by
employing a local Newton’s iterative solution procedure.

Table 2

Evolution equations

Principle of maximum dissipation:Z
� � :Lp þ Y � _Z
� �

þ ��ð�;YÞ
� �

ds ¼ stat ð12Þ

Orthotropic yield function:

� ¼
ffiffiffi
2

3

r
�o11½

ffiffiffi
�
p � ð1� YÞ� ð13Þ

where:

� ¼
X3
i¼1

�iI
2
i þ �ðiþ6ÞIðiþ3Þ þ

1

2

X3
j¼1

�ðiþjþ1ÞIiIj

" #
ð14Þ

Y ¼ �HZ� ð�1 � �o11Þ � ð1� expð��ZÞÞ ð15Þ
Yield function invariants:

Ii ¼ tr iMy

� �
dev�

� �
; Iðiþ3Þ ¼ tr iMy

� �
ðdev�Þ2

h i
; i ¼ 1; 2; 3 ð16Þ

Structural tensors at anisotropic yield function:

iMy ¼ ivy � ivy; i ¼ 1; 2; 3 ð17Þ
where ivy are privileged material directions.
Evolution equations:

Lp ¼ �
@�

@�
) Lp ¼ �

ffiffiffi
2

3

r
�o11
2
ffiffiffi
�
p

@�

@dev�

@dev�

@�
; ð18Þ

_Z ¼ � @�
@Y

) _Z ¼
ffiffiffi
2

3

r
�; ð19Þ

where:

@�

@dev�
¼
X3
i¼3
½2�iIiðiMyÞT þ �ðiþ6Þ ððiMyÞ dev�þ ðiMyÞ dev�Þ

þ 1

2

X3
j¼1

�ðiþjþ1Þ ððiMyÞT Ij þ IiðjMyÞTÞ
# ð20Þ
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In order to ensure quadratic convergence in the global
iteration scheme an algorithmic tangent operator is
derived. It is achieved by linearization of the second

Piola–Kirchhoff tensor S = C
�1
, with respect to the

right Cauchy–Green deformation tensor C

@S

@C
¼ @C

�1

@C
�þ C�1

@�

@C
ð22Þ

The theory and the computational algorithms have
been implemented and applied to a shell finite element

developed by Sansour et al. [8], allowing the use of
complete three-dimensional constitutive laws.

3. Numerical example

As an example, deformation of a simply supported

square plate, depicted in Fig. 1, is considered. The
geometrical data are shown in the figure and the mate-
rial data are Young’s moduli E1 = 210GPa, E2 =

84GPa, E3 = 84GPa, Poisson’s ratios �12 = 0.2285,
�13 = 0.2426, �23 = 0.199 and shear moduli are G12 =
42GPa, G13 = 42GPa, G23 = 81GPa. The initial yield
stresses are �11 = 585MPa, �22 = 810MPa, �33 =

360MPa, �12 = 286MPa, �13 = 234MPa, �23 =
260MPa and the isotropic hardening parameter H =
2.0GPa. The plate is subjected to the conservative load

of p0 = 1MPa and whole plate is dicretized by 35 � 35
elements.
Figures 1 and 2 show deformed configurations of the

plate with the rotation of the privileged directions of

Fig. 1. Geometrical data and deformed configuration at angle of 08.

(a) (b)

Fig. 2. Deformed configuration at angle of (a) 308, (b) 608.

I. Karšaj et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 285



orthotropy relative to the fixed co-ordinate system given
by the angles 08, 308 and 608. The isolines of the vertical
displacement are plotted on these figures. A significant
influence of the material privileged directions on the
deformation process can be observed.

4. Conclusion

An efficient large strain elastoplastic material model
for multiplicative inelasticity has been presented. The
model employs an orthotropic constitutive law for the

stress tensor and an orthotropic yield function in terms
of material Eshelby-like stresses. An appropriate for-
mulation of an orthotropic free energy function is

considered. Nonlinear isotropic hardening is considered
as well. The privileged directions of both the elastic
constitutive law and the flow rule are described by

structural tensors. Integration of the evolution equations
is carried out using the exponential map and a consistent
elastoplastic tangent modulus is derived. The numerical

example demonstrates a significant influence of aniso-
tropy and the privileged directions on the deformation
process. The numerical algorithms are accurate and
robust but it must be stressed, however, that the

resulting algorithmic expressions are very involved.
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