
A diversity of computer approaches

in the homogenization of random composites

M. Kamiński*
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Abstract

A review of the various numerical techniques relating to the homogenization of composites exhibiting random

properties is the main aim of this paper. The simulation, spectral and perturbation-based computational techniques are
contrasted below to demonstrate their major as well as minor points in determination of probabilistic moments for
effective material tensors in various problems. Special attention is given to the existing and future possible application

of symbolic computations and those carried out by the finite element method (FEM) commercial programs. As
summarized here, the solution for the homogenization problem of random composites consists of a series of finite
element analyses for the analogous boundary value problem on the same periodicity cell instead of a single cell problem

analyzed in a deterministic situation. A combined application of symbolic and FEM programs is especially efficient in
further numerical simulations of random composites and can be used in probabilistic sensitivity analyses for various
homogenized composite structures.
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1. Introduction

Homogenization is an alternative method to tra-

ditional analytic and numerical analysis of composite
materials and structures. The homogeneous effective
material tensors determined algebraically or numerically

in the cell problems solutions can be used instead of the
original partially constant material characteristics to
simplify further modeling. Analogous methodology

finds an application in the case of random composites,
where material properties and/or geometrical micro- and
global parameters are introduced as random variables or

fields [1]. Note that the randomness in physical problems
is introduced when (a) a response has some random
deviation and (b) the response is unknown. According to
deterministic problems, computational methods form an

inherent part, which influences probabilistic analysis.
That is why classical simulation methodology together
with spectral perturbation, as well as some symbolic

numerical techniques are employed in such an analysis.
A collection of most of the numerical methods in this
area is the main issue of this paper in the context of

parallel finite element method (FEM) and symbolic
mathematical computations.

2. Deterministic homogenization problem formulation

Let us consider a periodic displacement function u(y)
being a solution of the following boundary value
problem:

�ij;j ¼ �FiðyÞ; y 2 �

�ij ¼ CijklðyÞ"klðuÞ; y 2 � ð1Þ
�Nj j ¼ gðyÞ; y 2 �r r ¼ 1; . . . ; m

where m is the total number of various interface
boundaries and � denotes the composite region. If the
function g(y) represents the additional differences of the
elasticity tensor components for various constituents [2],

the homogenization function ��� for �, � = 1, 2 in the
plane strain is obtained. The variational form of Eq. (1)
may be rewritten as follows for n various components in

the composite:
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Numerical solution of three homogenization tests is
necessary to calculate effective characteristics in a plane

equivalent to the transversal cross section of the fiber-
reinforced composite, where the solution vector plot of a
for the first problem (�11) is given in Fig. 1.

3. Monte-Carlo simulation

The Monte-Carlo simulation technique, being the

oldest numerical approach in stochastic simulations,
consists of an initial generation of all realizations for the
random input, sequential solution of the given equili-

brium problem, and final statistical estimation of the

desired random output quantities. Since the effective

elasticity tensor is calculated from two separate com-
ponents, simulation can be done independently for the
spatially averaged elastic properties and homogenizing

stresses. One may implement the following combined
statistical-analytical formulas for expectations and var-
iances [2]:
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Fig. 1. Homogenization function �11 for the upper half of the RVE.

Fig. 2. Probability density function of the effective elasticity tensor.
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Furthermore, averaged elastic properties can be
defined by the closed form probabilistic moments when

material properties of the composite constituents are
randomized only and then, simulation is really necessary
only for the second component.

As shown in Fig. 2, the power of the Monte-Carlo
approach is in providing an opportunity to exact prac-
tical computations of any order probabilistic moments

and, especially, estimation of the output probability
density function. Statistical estimation for this distribu-
tion function of the effective elasticity tensor component
C
ðeffÞ
1111 for the fiber-reinforced composite with round fiber

and material data: E [ef] = 84.0GPa, �(ef) = 8.4GPa
and E [em] = 4.0GPa, �(em) = 0.4GPa is shown for
various numbers of random realizations. As can be seen,

the simulations number 103 is sufficient to obtain satis-
factory approximation and to show that the
homogenized coefficient is Gaussian (third- and fourth-

order probabilistic coefficients take the values 0 and 3).

4. Stochastic perturbation technique in homogenization

Analogously to spectral analysis, discussed further,

some expansion is proposed for the random fields pre-
sent in the problem. The following Taylor formula is
applied to express elasticity tensor components:

Cðy;!Þ ¼ C0ðyÞ þ
Xn
i¼1
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iCðyÞ
@bið!Þ (5)

The nth-order expansion of all parameters in variational
formulation reflecting the homogenization cell problem
leads to ‘n + 1’ deterministic equilibrium equations,

where up to nth-order displacements, strains and stresses
are calculated. They are finally combined into a single
formula describing the random effective elasticity tensor

as follows:
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As already proven, see [2], the second-order metho-
dology is effective in all those cases, where a dispersion

of the input random variables represented by the coef-
ficient of variation is less than or equal to 0.15.
Computational implementation may be relatively easily

done in any FEM program enhanced with the stochastic
perturbation subroutines.

5. Stochastic spectral techniques

The basic idea of this methodology is to make some
series representation of the basic random fields using the
so-called Karhunen-Loeve method, a homogeneous or

polynomial chaos representation [3]. According to this
methodology, a random constitutive tensor can be
represented by the following expression:

Cðy;!Þ ¼ C0ðyÞ þ
Xn
i¼l

ffiffiffiffi
�i

p
�ið!ÞCðiÞðyÞ ð7Þ

where �i stands for standardized uncorrelated random
variables, �i and C(i)(y) are the eigenvalues and eigen-
vectors describing the elasticity tensor, and C0 is the

additional mean value. An application of analogous
expansions for the homogenization functions �kl

� results
in the formula for the effective elasticity tensor, which

can be proposed as
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Note that �(i)(�) are obtained from the finite element
solution for the eigenproblem on the representative

volume element (RVE) with periodic boundary condi-
tions. Also note that if small variations of random input
in the perturbation method are not demanded, both

spectral and perturbation methods need the first few
components of the expansion to ensure satisfactory
convergence of the results.

6. Algebraic approximations and bounds for the effective

characteristics

In a more general approach when the information
about a location and the total number of the fibers in the

RVE is incomplete, the algebraic approximations of the
homogenized properties are employed [4,5]. The upper
bounds for the effective bulk and shear modulus are
introduced, for instance, as follows:
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Furthermore, lower bounds for the elasticity tensor
are obtained with the same equations where �u, �u, �max,
�max are replaced with �l, �l, �min, �min; cr, 1 	 r 	 n

denote volume fractions of the composite components in
the RVE. Note that they can be used in conjunction with
Monte-Carlo analysis to determine probabilistic char-

acteristics of the bounds in the case of elastic properties
defined as random design parameters of the composite.
The Monte-Carlo simulation implemented in MAPLE is

used to generate a rectangular sample of the composite
cross section (see Fig. 3), where the fiber’s number is the
Poisson random variable. Fibers are embedded in the

RVE using the uniform distribution with no contact
between each two entities, whilst elastic properties can
be given by the Gaussian variables, for instance. Note
that, also in the case of upper and lower bound, sym-

bolic simulation, integral formulas for the probabilistic
moments and derivation of the characteristic function
are numerically available. This case, contrary to the

previous methods, obeys the second kind of random-
ness, where the information about spatial distribution of
the fibers or reinforcing particles is not available.

7. Concluding remarks and further perspectives

Therefore, a combined symbolic-FEM computational
approach seems to be the most effective in homo-
genization of random composites with various types of

uncertainties appearing in both material properties and
its microgeometry. The symbolic computations are
employed for either the generation of random spaces

(used further for FEM-based random trials) or to derive
an algebraic combination of various FEM solutions to
get a description of the relevant probabilistic moments.
Symbolic programs can be useful in a derivation of up to

nth-order derivatives of the state parameters with
respect to the input random variables. As shown in Fig.
3, symbolic computational programs can be used to

generate random samples of the entire RVE, which can
be further processed by the FEM-meshing procedures
and structural analyses.
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Fig. 3. Random samples of the representative volume element

with multiple fibers.
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