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Abstract

This paper deals with the first-order and second-order computational homogenization of a heterogeneous material

undergoing small displacements. Typically, in this approach a representative volume element (RVE) of nonlinear
heterogeneous material is defined. An a priori given discretized microstructure is considered, without focusing on
detailed specific discretization techniques. The key contribution of this paper is the formulation of equations coupling

micro- and macro-variables and the definition of generalized boundary conditions for the microstructure. The coupling
between macroscopic and microscopic level is based on Hill’s averaging theorem. We focus on deformation-driven
microstructures where overall macroscopic deformation is controlled.
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1. Introduction

A wide range of materials produced by industry, as
well as natural materials, are heterogeneous at a certain
scale of observation. The macroscopic (equivalent)
properties of a heterogeneous material should describe

the essence of microstructural response. They must be
independent of its macrostructural loads or geometry.
The micro-to-macro transitions have to be consistent

with basic principles of continuum mechanics, i.e. they
are subjected to principles of conservation of mass,
momentum, energy, and to the Clausius–Duhem

inequality [1].
A comprehensive review of the overall properties of

heterogeneous materials is provided by [2,3]. Equivalent

material properties are obtained as a result of analytical
or semi-analytical solution. In recent years, a promising
alternative approach has been developed, i.e. computa-
tional homogenization [4]. This micro–macro modelling

procedure does not lead to closed-form constitutive
relations, but computes on-line the strain–stress rela-
tionship at a selected point with attributed detailed

microstructure assigned to that point [4]. This approach
does not require any constitutive assumption on the
macro level and enables the incorporation of nonlinear

geometric and material equations [5]. The computa-
tional homogenization analysis is possible for any

discretization technique in space and time.

2. First-order computational homogenization

To couple the micro- and macro-strain tensors we
define overall macro strain �" as a volume average of

microstructural strain tensor " :

�" ¼ 1

V

Z
v

" dV ¼ 1

V

Z
�

n� u d� ð1Þ

where u is displacement vector and n is the outer normal

vector of the representative volume element (RVE) This
relation is valid only if the following boundary condition
is fulfilled:

Z
�

n� ðu� �" � xÞ d� ¼ 0 ð2Þ

which forces RVE boundary to deform on average
according to the prescribed strain �" . The relation for
macroscopic stress tensor �� is defined in terms of micro
stress � as

�� ¼ 1

V

Z
V

� dV ¼ 1

V

Z
�

x� t d� ð3Þ
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The average microscopic stress work has to be equal
to the local macroscopic stress work, thus an additional

boundary condition has to be satisfied:
Z

�

t � ðu� �" � xÞ d� ¼ 0 ð4Þ

Summarizing, rewriting Eqs. (2) and (4) gives us a
generalized boundary condition. Applying this for-

mulation, particular classical boundary conditions are
included as special cases, i.e. linear displacements, con-
stant tractions and periodic displacements. We note that
these equations are consistent with the deformation-

driven approach.
The first-order computational homogenization strat-

egy provides a way to determine the macroscopic

response of a heterogeneous material with an accurate
account for microstructural characteristics [4]. Despite
numerous attractive characteristics, there are some lim-

itations. One of them is that a microstructural length
scale must be negligible in comparison with a macro-
structural characteristic length. Changing the scale of
the entire macrostructure must lead to identical results

and, if we change micro the scale of RVE, the average
micro strain and stress must not change, see Eqs. (1) and
(3).

3. Second-order computational homogenization

The definitions of macroscopic strain and stress ten-
sors for second-order homogenization consistent with

prescribed deformation and Hill’s theorem yield Eqs. (1)
and (3). The relation between the macroscopic second
gradient of displacement �� and microscopic variables
which do not lead to higher-order boundary conditions

is based on averaging the relation betwen macro and
micro quantities:

gradu ¼ �" þ �� � x ð5Þ

Multiplying Eq. (5) by the position vector x and scaling

by the RVE volume leads to an additional static
boundary condition in terms of displacements:

�� :

Z
V

ðx� x� 1þ x� 1� xþ 1� x� xÞ dV

¼
Z

�

n� u� x d� ð6Þ

which forces the RVE boundary to deform on average

according to the prescribed second gradient of dis-
placements �� . We define the higher-order stress:

�� ¼ 1

V

Z
V

ð1� x þ x� 1Þ � � dV ¼ 1

2V

Z
�

x� x� t: d�

ð7Þ

This relation satisfies the Hill averaging theorem if an
additional condition boundary has the form:

Z
�

t � ðu� �" � x � 1

2
�� : x� xÞ d� ¼ 0 ð8Þ

Summarizing, Eqs. (2) and (6) are boundary condi-

tions enforcing the deformation of the RVE boundary
on average according to the prescribed strain and second
gradient of displacements. Equation (8) ensures that

local macroscopic stress work is equal to microscopic
stress work. By considering higher-order deformation
and stress tensors the second-order homogenization

approach deals with the microstructural size in a natural
way. Thus, the size effect is taken into account. We note
that this approach preserves the microstructural RVE

problem as a classical boundary value problem, while on
macroscopic level the higher-order continuum model is
applied [4].

4. Computational aspects

It can be noted that a multiscale algorithm is parallel

by its nature. All RVE calculations for one iteration can
be preformed at the same time. This gives the motivation
to develop a parallel implementation. The boundary

value problem on the macro and micro scale was dis-
cretized by use of the finite element method. It can be
shown that the overall stress and tangent moduli of

microstructure may be computed exclusively in terms of
discrete forces and stiffness properties of boundary.
Incorporated by a dual Lagrangian multiplier method
[2,5], the boundary conditions of the RVE generate an

algorithm for finding equilibrium states and overall
properties of microstructures.

5. Example

The application of the formulation outlined above is

demonstrated by a numerical example. A simple con-
stitutive response for the constituents of the
microstructure is used, i.e. isotropic J2 plasticity with

linear isotropic hardening. The elastic microstructural
constituents are described by Hooke’s equations. The
scheme of macrostructure and two microstructures a

and b are shown in Fig. 1. Only displacement boundary
conditions are applied to macrostruture and load was
displacement controlled. It was assumed that the
microscale characteristic size is small compared with

macroscale characteristic size. So that first-order com-
putational homogenization was applied. In Fig. 2 the
equilibrium paths for different micro-to-macro transi-

tions and RVE geometries are shown. The homogeneous
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Fig. 1. Deformation of macrostructure and distribution of equivalent plastic strain in deformed RVE with periodic boundary

condition.

Fig. 2. Equilibrium paths and distribution of equivalent plastic strain on deformed RVE for three classical micro-to-macro transitions.
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displacement and stress boundary conditions provide

the upper and lower bounds of the response. The solu-
tion of periodic deformation lies between them. Table 1
summarizes the macro displacements for different tests,

and demonstrates the inability of stress and displace-
ment boundary conditions to capture a periodic
composite.

6. Conclusions

A computational homogenization concept for het-
erogeneous materials undergoing small deformations
has been developed. Generalized boundary conditions

have been formulated for deformation driven micro-
structure. An example has been presented, which covers
elastic-plastic microstructures of simple geometry and

macrostructure response for first-order continuum. The

implementation of algorithm for second-order con-
tinuum is currently developed.

Acknowledgement

Financial support by the Polish Committee for
Scientific Research, Grant No. 8T07A 031 20, Hybrid

Analysis of Elastoplastic Structures Basing on Interac-
tion FEM and Artificial Neural Networks, is gratefully
acknowledged.

References

[1] Eringen AC. Mechanics of Continua. New York: John

Wiley & Sons, 1967.

[2] Nemat-Nasser S, Suresh S. Micromechanics: Overall

properties of Heterogenous Materials. Amsterdam:

Elsevier, 1993.

[3] Strzelecki T. Mechanics of Heterogenous Media, Homo-

genization Theory (in Polish). Wrocław: Dolnośla̧skie
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Table 1

Horizontal nodal force fx at point A for horizontal displace-

ment ux = 0.5 (see Fig. 1)

fAx,

Microstructure a

fAx,

Microstructure b %

Displacement b.c. 1.55 1.66 6.6%

Periodic b.c. 1.51 1.47 2.6%

Traction b.c. 1.22 not converged �
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