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Abstract

Particulate flow and particulate processing have received renewed interest as the driving needs of industry in
understanding powder and particulate systems (e.g. in the manufacture of pharmaceuticals and the deposition of thin

powder films) has met the academic development of tools, such as discrete element modeling (DEM) codes, to
investigate such systems at a granular scale. The practical limit for the number of particles that can be simulated by the
discrete element method depends critically on the particle shape, the data structures, and the algorithms used for

contact and force generation. Simple shapes, such as spheres, though optimal in the above aspects, are not always able
to reproduce phenomena of interest, and a non-spherical shape needs to be included. The focus of this paper is on
representing a particle’s geometry as a general ellipsoid in a computationally efficient manner via a new contact

resolution algorithm. The algorithm presented here takes advantage of the properties of the normal field of the
ellipsoidal geometry in combination with an efficient iterative vector-based search algorithm. Special attention is given
to the software implementation of the algorithm, and a discussion of the computational efficiency of the algorithm is

also provided.
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1. Introduction

The computational load of discrete particle simula-
tions places a limit on the number of particles that can
be handled by today’s computers. The processing and

memory resources required are determined by the
number of particles, the complexity of the particles, and
the algorithms and data structures used to represent

them. For this reason, there is a great benefit if simple
shapes such as spheres can be used. However, non-
spherical particle shape has been found to be important

in representing many physical processes, such as the
mixing of powders and the strength of granular mate-
rials. This paper seeks to illustrate an algorithm for
ellipsoids that can be competitive with sphere clusters.

The contact detection part of the pipeline is particular
computationally intensive. In this paper, contact detection
is split into two phases, neighbor sorting [1,2,3,4,5,6] and

contact resolution. Since neighbor-sorting algorithms

typically use a bounding sphere or bounding box

representation of objects, the same algorithms can be
adapted for use with arbitrary shapes. This paper
focuses on the remaining problem of contact resolution.
Geometry can be a first-order effect in determining the

behavior of many systems, as shown in discrete element
modeling (DEM) simulations for angle-of-repose
experiments [7]. Physical experiments also have shown

that angularity and sphericity of grains are first-order
effects in the angle of repose [8]. The sphere, though
simple to implement, is hindered in its ability to capture

key behaviors of real particle systems that contain non-
spherical particles. Spheres tend to exhibit excessive
rolling when subjected to small perturbations, are
unable to represent the particle interlocking observed in

many systems, and tend to form into regularly packed
structures under dynamic loading. Though many
schemes have been introduced to mitigate these draw-

backs, they typically are empirically based rather than
mechanically based.
The ellipsoid is the next obvious choice after a sphere

as a geometric primitive to represent a particle’s
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topology. It is part of the same family of quadrics as the
sphere, but it offers additional favorable properties,

including the capability of providing geometric inter-
locking, resistance to pathological rolling, and a more
flexible and accurate convex hull for many particles of

interest. Though several researchers have offered ellip-
soid contact algorithms [9,10,11,12,13,14], the additional
computational requirements required for contact reso-

lution have persisted in being well beyond those for
spheres, and the ellipsoid is rarely used in large-scale
DEM models.
In this paper, we seek to take advantage of the sim-

plicity of spheres while overcoming some of the
problems inherent in the approaches just discussed. In
particular, this paper provides a new contact resolution

algorithm for the general ellipsoid that takes advantage
of the convexity and normal field of the ellipsoidal
geometry to converge quickly to a solution for the

contact point.

2. Formulation

This contact resolution algorithm is structured around

searching a space given a set of criteria. Therefore, it is
first necessary to define the constraints on the space that
is being searched. Here, the goal is to determine two

independent parameters:
1. the orientation of the longitudinal cross-section of

the ellipsoid that satisfies the constraint of both

passing through the major axis and passing through
the contact point;

2. the location along the major axis of the transverse
cross-section of the ellipsoid that satisfies the con-

straint of both being orthogonal to the major axis
and passing through the contact point.

The coordinate system that will be referred to

throughout this paper is illustrated in Fig. 1.

2.1. Initial estimate

As with most numerical algorithms, a good initial
guess can aid significantly in computational complexity.
For this algorithm, the initial guess chosen is based on
the vector between the centroids of the two bodies (i.e.

estimating the contact condition as equivalent to that for
spheres). This is shown in Fig. 2 as the segment CG12.
The vectors P1 and P2 are then computed from Eq. (1)

to offer the first search point:

~Pi ¼
ðRi � CG


!
ij � k̂Þ � k̂

ðRi � CG

!

ij � k̂Þ � k̂
���

��� ð1Þ

The surface is reparameterized into cylindrical coor-

dinates, as shown in Fig. 3, and the angle � is found by
evaluating P1 and P2 for the respective bodies.
The contact point is determined on each body by

finding the intersection of CG12 with each body’s sur-
face. The normal to the surface is calculated on each
surface and used to update the respective body’s contact
point estimate. This update allows two new points to be

used as a new estimate: a new point along the major axis
(on k from Fig. 1) and a new point on the plane con-
taining the semi-minor and minor axes (which yields a

new � from Fig. 3).

2.2. Successive estimates

Each new � and k position is used to produce a new
candidate contact vector, which is then intersected with

both surfaces to find contact point estimates. The nor-
mal is found at the contact point on each, and the
procedure is repeated until it produces bounds on the

location of the true contact point. Convergence is

Fig. 1. Rectangular coordinate system for parameterization for

the ellipsoid surface, where k is oriented along the major axis, j

along the semi-minor axis, and i along the minor axis.

Fig. 2. Graphical representation of the result of Eq. (1) for the

case of an ellipsoid pair with coplanar major axes.
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determined by the skew of the surface normals at the

estimated contact point on each respective body.
Bounding is determined by testing whether the algo-
rithm has ‘overshot’ the contact point, which is

determined easily by the sign of the cross-product of the
normals. The contact point update procedure is illu-
strated in Fig. 4.

3. Conclusions

An algorithm has been presented to offer a different
approach for calculating the contact point between two
generalized axially asymmetric ellipsoids (Fig. 2) using

the method of equivalent spheres. The algorithm relies
on the constraints imposed by the ellipsoidal geometry
to reduce the surface point search from a coupled three-
dimensional search space to a coupled two-dimensional

search space.
Because of the almost exclusive use of vector opera-

tions, the evaluation of transcendental functions is

minimized, which significantly reduces the computa-
tional requirements. In terms of theoretical floating-
point operation count, the algorithm is approximately

1400 floating-point operations (flops), or approximately
1�s per pair. Because of the methodology behind the
method of equivalent spheres, extension to contact
between ellipsoids and spheres or ellipsoids and trian-

gular facets is straightforward.
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Fig. 3. Cylindrical coordinate parameterization.

Fig. 4. Graphical representation of the contact point estimate

update procedure.
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