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Abstract

The paper is concerned with the problem of an infinite, isotropic Boltzmann viscoelastic plane containing a large

number of randomly distributed, non-overlapping circular holes and perfectly bonded elastic inclusions. The holes and
inclusions are of arbitrary size and the elastic properties of all of the inclusions can, in general, be different. The whole
system is subjected to time-dependent stresses at infinity. The method of solution is based on a direct boundary integral

approach for the problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described
by Crouch and Mogilevskaya [1], and a time-stepping strategy for general viscoelastic analysis described by Mesquita
and Coda [2]. Numerical examples are included to demonstrate the accuracy and efficiency of the method.
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1. Introduction

Composite materials often exhibit viscoelastic beha-
vior. Thus, a robust and efficient numerical approach for
modeling viscoelastic-elastic composite materials, espe-

cially subjected to varying loading condition, is desired.
In this paper, we combine the direct boundary integral

equation approach for multiple holes and inclusions

developed in [1] and the time-stepping approach for
general viscoelastic analysis explained in [2], to consider
the problem of an infinite, homogeneous, isotropic vis-

coelastic plane containing multiple circular holes and
circular elastic inclusions, subjected to time-dependent
loading at infinity (Fig. 1). The Boltzmann model is

employed to simulate the viscoelastic plane.

2. A direct boundary integral method in time domain

The Boltzmann model (see Fig. 1) contains two elastic

components: instantaneous elasticity (elastic modulus:
Ee) and viscous elasticity (elastic modulus: Eve), and one
viscous component (viscosity: �).

2.1. Basic equations

The system of integral equations for the problem is

obtained by considering the superposition of two sepa-
rate problems: (i) an infinite viscoelastic plane with
circular holes and (ii) circular elastic discs.

For the first problem (the viscoelastic plane), we
adopt the formula developed by Mesquita and Coda [2],

Fig. 1. A Boltzmann viscoelastic plane containing multiple

circular holes and elastic inclusions, subjected to time-depen-

dent loading.
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where S is the totality of the boundaries of circular holes
and tj (x), uj (x) and _tjðxÞ; _uj(x) are the tractions, dis-
placements and their rates. Uij (
,x) and Tij (
,x) are the
Kelvin fundamental solutions and � = �/Eve.
For the second problem (the elastic discs), we use

Somigliana’s formula to express the displacements ui (
)
at a point 
 within an elastic region � in terms of inte-
grals of the tractions tj (x) and displacements uj (x) over
the boundary S of the region,
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Boundary integral equations can be obtained from
Eqs. (1) and (2) by taking the limit 
 ! 
0 2 S. We will
perform the operation of taking this limit after the

approximation of the unknown functions in Eqs. (1) and
(2) and calculation of the integrals.

2.2. Time-stepping approach

To apply the time-stepping process, we assume linear
behavior in time [2]:
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where �t is the time step size and ui,s (
), ti,s (
) and

ui,s�1 (
), ti,s�1 (
) are the displacements and tractions in
the i-direction at step s and s�1 respectively. We assume
that the medium is initially free of stress and displace-

ment, thus ui,0 (
) = 0, ti,0 (
) = 0.
After substituting Eq. (3) into Eq. (1), and performing

some algebraic manipulation, we obtain the following

expression:
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where we have introduced following abbreviations:

c1 ¼
�tðEe þ EveÞ þ �Eve

ð�tþ �ÞEve
; c2 ¼

�

�tþ � ð5Þ

When computing results for step s, the displacements
and tractions at step s�1 are presumed to be known.

2.3. Fourier series representation

For circular boundaries, the boundary displacements
and tractions at each step s can be expanded in trun-
cated Fourier series as follows:
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The number of terms Ns in Eq. (6) may be different for

each step s, and can be adjusted to obtain a specified
computational accuracy [1].
Consider first the case of one hole. With the sub-

stitution of Eq. (6) into Eq. (4), and performing the
analytical integration (by using complex variables and
the residue theorem [3]), the displacements ui,s (
) can be

expressed in terms of the Fourier coefficients for
boundary tractions and displacements at step s and step
s�1. Taking the limit 
 ! 
0 2 S, ui,s (
) can be
represented by Fourier coefficients for boundary dis-

placements directly, as in Eq. (6). This equivalence
enables us to find the relationships between Fourier
coefficients for tractions and displacements at the

boundary of the circular hole.
For the case of multiple holes, the Fourier coefficients

for displacements for one typical hole are written in

terms of not only the Fourier coefficients for tractions at
the boundary of the current hole, but also the coeffi-
cients for tractions and displacements at the boundaries

of all other holes. The integrals involving the effects of
other holes can be evaluated analytically [1].
The case of an elastic disc is treated similarly. As the

result, the relationship between the Fourier coefficients

for the tractions and displacements at the boundary of
each disc can be found.

2.4. Coupling of the viscoelastic plane and elastic
inclusions

At each step, a superposition process is used to handle
the situation in which inclusions are introduced into the

viscoelastic plane (a hole is treated as an inclusion with
zero elastic modulus). For the viscoelastic matrix, we
represent the total, or resultant, stresses �

ðtotalÞ
ij;s as the

sum of the initial stresses �
ð0Þ
ij;s and the stress changes �ij;s

due to the presence of the holes, i.e.

�
ðtotalÞ
ij;s ¼ �ð0Þij;s þ �ij;s ð7Þ
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where the components of �ij,s at step s can be obtained
by differentiating displacements given by Eq. (4) with
respect to the co-ordinates 
x and 
y to compute the

strains, and then substituting the strains into the con-
stitutive relation of Boltzmann model. �

ð0Þ
ij;s is the current

stress state of an infinite, homogeneous viscoelastic

plane, without any hole or inclusion. Thus, it has the
same value as �1, which is given in sinusoidal form in
the present research:

�1xxðtÞ ¼ ��xx þ Axx sinð!xxt� �xxÞ
�1yyðtÞ ¼ ��yy þ Ayy sinð!yyt� �yyÞ ð8Þ
�1xyðtÞ ¼ ��xy þ Axy sinð!xyt� �xyÞ

where, ��ij, Aij, !ij and �ij are the average, the varying
amplitude, the frequency and the phase delay of stress
�1ij respectively.

Similar relationships can be written for the displace-

ment components of the matrix, namely:

u
ðtotalÞ
i;s ¼ u

ð0Þ
i;s þ ui;s ð9Þ

where the components of ui,s are given by Eq. (4), and
the components of u

ð0Þ
i;s are given by applying the same

stress history �1 to an infinite homogeneous viscoelastic
plane. Thus, u

ð0Þ
i;s can be obtained by applying the cor-

respondence principle and Laplace transform to the

solution for a corresponding problem of an infinite
elastic plane subjected to constant stresses at infinity.

The continuity of tractions and displacements at the
interface between matrix and inclusions provides the

supplemental equations to define the unknown coeffi-
cients for the tractions and displacements at the
boundaries of the holes and discs. The final equation

system at each step is solved by an iteration procedure.

3. Examples

3.1. A benchmark problem of one inclusion

Consider the case of one circular elastic inclusion (Fig.
2) under the following time-dependent stresses at

infinity:

�1xxðtÞ ¼ 10þ 10 sinð10tþ 10ÞMPa

�1yyðtÞ ¼ 20þ 20 sinð20tþ 20ÞMPa ð10Þ
�1xyðtÞ ¼ 30þ 30 sinð30tþ 30ÞMPa

The analytical solution for this problem can be
obtained by using the correspondence principle and

Laplace transforms. We computed the stresses and dis-
placements inside the matrix and inside the inclusion
using our boundary integral method and compared the
results with the analytical solutions. It can be seen from

Fig. 2 that the numerical results agree well with the
analytical solutions for all time steps.

3.2. An example with multiple holes and inclusions

This example involves the system of two circular holes
and two circular inclusions inside the infinite viscoelastic
plane (Fig. 3). The time-dependent biaxial stresses at

infinity are given below:

�1xxðtÞ ¼ 20þ 20 sinð2tþ 20ÞMPa

�1yyðtÞ ¼ 10þ 10 sinðtþ 10ÞMPa
(11)

The analytical solution for this problem is not avail-

able and commercial finite element software (ANSYS)
was employed for the sake of comparison. We used the
same time step length �t = 0.005 s in both methods.

With the direct boundary integral method, this problem

Fig. 2. Stresses at point A in the example of one inclusion.
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required 11–12 terms of the Fourier series for the two
inclusions and 10 terms for the two holes (given accu-
racy parameter �= 10�5 [1]), and the computation took

only 8 minutes with a Pentium III 931 MHz PC. The
computation with ANSYS used 4176 elements and took
about 5 hours with an IBM SP workstation.
It can be seen from Fig. 4 that the results (the dis-

placement ux at points B and C) are essentially identical.

4. Conclusions and future work

This paper presents a time-domain direct boundary

integral method to solve the problem of an infinite vis-
coelastic plane containing multiple circular holes and
elastic inclusions under time-dependent loading at infi-

nity. The direct analytical evaluation of all the integrals

involved ensures the high accuracy and efficiency of this
method, as demonstrated by the examples. Applications

of this approach lie in the area of composite materials.
Future developments include (i) incorporation of a fast
solver algorithm (e.g. the fast multipole method), to ease

the computation involving a large number (e.g. thou-
sands) of holes and inclusions; and (ii) incorporation of
a finite exterior boundary for the viscoelastic plane to

model practical problems for composite materials more
accurately.
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Fig. 3. Two holes and two inclusions.

Fig. 4. ux at points B and C for the example of two holes and

two inclusions.
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