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Abstract

This paper presents the preliminary results of studies on the dynamics of mistuned bladed disks including both

structural and aerodynamic coupling. Aerodynamic coefficients calculated from a quasi-3D unsteady aerodynamic code
are incorporated into a high-fidelity structural model employing the component mode mistuning (CMM) method. The
extended CMM model is applied to the analysis of the dynamics of an industrial compressor stage. The eigenvalue

structures of the tuned and mistuned systems including aerodynamic coupling are compared for the cases without
structural damping, with small structural damping and with large structural damping. Also, the effect of aerodynamic
coupling on the forced response of the system is investigated. For the cases studied, the large structural damping can

change the eigenvalue structure of the mistuned system. Under certain conditions, the aerodynamic coupling is shown
to decrease the mistuned forced response amplification factor compared to the tuned forced response.
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1. Introduction

The vibration analysis of turbomachinery rotors is

important for the design and safety of commercial and
military jet engines. Previous studies showed that mis-
tuning, i.e. small differences between sectors of bladed

disks, changes the dynamics of the system dramatically
(e.g. [1–10]). Although aerodynamic coupling, as well as
structural coupling, can have an important influence on

the dynamics of bladed disks, most current studies focus
on the effects of structural coupling only. Modal loca-
lization of aeroelastic modes of mistuned bladed disks

has been examined [11,12]. Early mistuning studies
incorporating aerodynamic coupling used mainly low
fidelity structural models (e.g. [13,14]). Recently, high
fidelity structural models have been developed (e.g. [15–

18]). However, mistuning studies conducted using these
high fidelity structural models and including aero-
dynamic coupling are limited. Kenyon et al. [19]

discussed the aerodynamic effects on resonant blade
stress of a mistuned system numerically and experi-
mentally. Kielb et al. [20] studied the flutter of a

mistuned bladed disk with both aerodynamic and
structural coupling, and found weak effects of aero-
dynamic coupling onto the forced response.

2. Theory

The equations of motion of the mistuned bladed disk

are derived using a hybrid-interface component mode
synthesis method, where the tuned bladed disk is con-
sidered as a free-interface component and the (virtual)

blade mistuning is a fixed-interface component. They
can be expressed as [18]

½ð1þ j�ÞKsyn þ Ka � !2Msyn�pS� ¼ �ST

� f ð1Þ

where�s is a truncated set of normal modes of the tuned

system, the subscript � denotes the interface between the
tuned system and the virtual mistuning (i.e. the blade
degrees of freedom), pS� are the corresponding modal
coordinates, � is the modal structural damping, and

Msyn ¼ Iþ�S
�

T

�M�S
� ð2Þ

Ksyn ¼ �þ�S
�

T

�K�S
� ð3Þ
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where � is the diagonal eigenvalue matrix of the tuned
system, and �M and �K denote the mistuned mass

matrix and the mistuned stiffness matrix, respectively.
The modal aerodynamic coupling stiffness Ka can be

obtained from the aerodynamic coupling stiffness matrix

in the physical coordinates, Ak, as follows:

Ka ¼ �S
�

T

Ak�
S
� ¼ qCB�

T

I��CBTÞAk I��CB
� �

qCB� ð4Þ
�

where 6 denotes a Kronecker product, �CB is a set of

cantilevered blade mode shapes, and qCB� contains the
corresponding modal participation factors.
The aerodynamic coupling stiffness matrix in the

cantilevered blade modal coordinates, Ãk, can be cal-
culated using frequency domain unsteady CFD codes.
The relationship between Ãk and Ak can be easily
obtained by the following modal transformation

~Ak ¼ I��CBTÞ E� � Ið ÞAk E� Ið Þ I��CB
� ��

ð5Þ

where E is the complex Fourier matrix, and * denotes
the conjugate transpose of a complex matrix. Finally,

the modal aerodynamic coupling stiffness matrix Ka can
be calculated as

Ka ¼ qCB
T

� E� Ið Þ~Ak E� � Ið ÞqCB� ð6Þ

When just one cantilevered blade mode shape ’CB is
considered in the aerodynamic analysis, Ãk is a diagonal
matrix given by

~Ak ¼ diagð ~Ak1 ; :::;
~Akj ; :::;

~AkNÞ ð7Þ

where N is the number of blades.
Based on the full-potential equation using a Galerkin

formulation [21], a quasi-three-dimensional model of a

cascade operating in an inviscid, irrotational, isentropic
flow is developed by considering the variation of stream
tube heights [22].
Consider the flow between two stream surfaces. For

an irrotational flow, the velocity vector can be expressed
as the gradient of the scalar velocity potential �̂. The
conservation of mass can be expressed as

@ �̂hð Þ
@t
þr � �̂r�̂h

� �
¼ 0 ð8Þ

where �̂ is the density of the fluid, and h is the height of
the stream tube.
If the flow is isentropic, the density and the pressure

are found from the integration of the momentum

equation to be

�̂ ¼ �T 1� � � 1

C2
T

1

2
r�̂
� �2

þ @�̂
@t

" #( ) 1
��1

ð9Þ

p̂ ¼ pT 1� � � 1

C2
T

1

2
r�̂
� �2

þ @�̂
@t

" #( ) �
��1

ð10Þ

where �T and pT are the total density and pressure,

respectively, p̂ is the pressure, � is the ratio of specific
heats, and CT is the total speed of sound.
Equation (8) can be transformed by using a varia-

tional principle [21,23]. Namely, the velocity potential,
defined in a simple-connected domain D, which satisfies
Eq. (8), renders extremum of the functional � given by

� ¼ 1

T

Z
T

ZZ
D

p̂hdxdydtþ 1

T

Z
T

I
Q̂�̂hdsdt ð11Þ

where T is the period of the unsteadiness in the flow, Q̂ is

the prescribed mass flux on the boundary, and s is the
distance along the boundary.
The steady flow in each strip is calculated first. Then,

the unsteady flow is linearized about the steady flow

under the assumption that the unsteady flow induced by
the motion of the airfoil is a small perturbation to the
steady flow. In this case, the velocity potential can be

expressed as the sum of a steady potential � and the real
part of an unsteady periodic potential �, i.e.

�̂ðx; y; tÞ ¼ �ðx; yÞ þ <½�ðx; yÞej!t� ð12Þ

with �<< �, j ¼
ffiffiffiffiffiffiffi
�1
p

and < representing the real part.
Using the cantilevered mode shape ’CB as the airfoil

motion, one can obtain the unsteady aerodynamic

pressure pj for a cascade of blades oscillating with the jth
interblade phase angle, and Ãkj

can be obtained by
integration over the whole blade surface area as follows:

~Akj ¼
1

m

Z
A

pjn �’CBdA ð13Þ

where n is the local normal vector, and m is the modal

mass corresponding to ’CB.

3. Results

A blisk, which is an axial compressor stage with 29
blades, is considered. First, the third group of blade-

dominated modes (second flexural) is studied. The fre-
quency of the blade alone is 9,706 Hz. The inflow
relative Mach number varies from 0.359 near the hub to
0.465 near the tip. The reduced frequency based on

chord is 0.93 near the tip. Figure 1 shows the eigenvalues
of the tuned and mistuned bladed disks with the aero-
dynamic coupling for three different systems: without

structural damping, with relatively small structural
damping, and with large structural damping. The
eigenvalues are divided by the nominal natural fre-

quency. The damping values for the latter two systems
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are 0.001 and 0.006, respectively. For the mistuned
system the standard deviation of the blade natural fre-
quencies is 3%. Compared to the tuned system with only

aerodynamic coupling, the real parts of the eigenvalues
of the mistuned system with only aerodynamic coupling
narrow down, while the imaginary parts expand out.

Thus mistuning makes the system more stable, and with
more scattered natural frequencies. The tuned and mis-
tuned eigenvalue structures of the system with small

structural damping are similar to those of the system
without structural damping, but with smaller real parts.
For the system with large structural damping, the mis-

tuned eigenvalue structure changes, and the real part of
the most stable mistuned eigenvalue is less than that of
the most stable tuned eigenvalue. The forced responses
to an excitation with engine order 28 of the tuned and

mistuned systems with small structural damping are
shown in Fig. 2. The aerodynamic coupling reduces the
response amplitude of the tuned and mistuned systems

and the effect is small.
Next, the fourth group of blade-dominated modes

(mixture of second flexural and second bending) is

investigated. The frequency of the blade alone is 16,513

Hz. The inflow Mach number is 0.536 near the hub and
0.729 near the tip, and the reduced frequency based on
chord is 1.246 near the tip. Figure 3 shows the tuned and

mistuned eigenvalues divided by the nominal natural
frequency for the different systems: without structural
damping, with small structural damping, and with large

structural damping. The absolute values of real parts of
the eigenvalues for the system without structural
damping, which stand for the aerodynamic damping, are

larger than those for the third group of modes, which
suggests that the effect of the aerodynamic coupling is
larger for the fourth group of modes. Also, for the

systems with small and large structural damping values,
the tuned and mistuned eigenvalue structures do not
change significantly. In this case, structural damping of
0.006 is not large enough to change the mistuned

eigenvalue structure of the system. Figure 4 shows the
forced responses of the system with small structural
damping to an excitation with engine order 27. Sur-

prisingly, the aerodynamic coupling increases the
response of the tuned system while it decreases the
response of the mistuned system, which results in a

significant decrease of the amplification factor of the

Fig. 1. Eigenvalues of the tuned and mistuned systems for the third group of blade-dominated modes with aerodynamic coupling: TN

stands for tuned system, MN for mistuned system, AE for aerodynamic coupling and ST for structural coupling.
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Fig. 2. Forced response of the tuned and mistuned systems with small structural damping for the third group of blade-dominated

modes, with and without aerodynamic coupling.

Fig. 3. Eigenvalues of the tuned and mistuned system for the fourth group of blade-dominated modes: ST1 stands for structural

damping of 0.001, and ST2 stands for structural damping of 0.006.
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mistuned forced response in comparison with the tuned

forced response. Therefore, the aerodynamic forces can
provide not only positive damping but also negative
damping, which increases the forced response. The effect

of negative damping is strong for a tuned system while
the effect of positive damping is strong for a mistuned
system.

4. Conclusions

The effects of the unsteady aerodynamic forces are
introduced into a high fidelity CMM structural model to

conduct the eigen-analysis and the forced response
analysis of the mistuned bladed disk. The model is
applied to a compressor stage with frequency mistuning.

The results show that the structural damping plays a
great role in the eigenvalue structure of the system. In
the particular cases studied, the mistuned eigenvalue

structure might be changed significantly due to the
existence of relatively large structural damping. The
effect of aerodynamic coupling on the forced response of
the system is complicated because the aerodynamic

coupling may decrease the forced response as well as
increase it.
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