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Abstract

The aim of this paper is to present the formulation and application of the coupled boundary and finite element
method (BEM/FEM) and an evolutionary algorithm (EA) to optimization of plates stiffened by beams subjected to
static or dynamic loads. The dual reciprocity BEM is used to model plates and the dynamic FEM formulation is used to

model beams. The BEM and FEM models are combined by transforming the FEM equations into the BEM form. The
problem of optimization is solved using an evolutionary algorithm. Numerical examples of optimization are shown.
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1. Introduction

Nowadays, the BEM and the FEM are the most
popular computer techniques suitable for solving many
engineering problems. However, when used separately,
both methods have advantages and disadvantages. The

advantages of both methods can be exploited by com-
bining them. There are several ways of coupling of BEs
with the FEs [1]. In the present approach, the equations

for different domains are assembled and the set of
equations for the whole structure is obtained using
compatibility of displacements and equilibrium of trac-

tions between the common interfaces.
Reinforced composite structures were analyzed and

optimized for instance by Górski et al. [2]. The results of
optimization by the EA for a simply supported stiffened

plate were compared with the solutions obtained using
the systematic search method showing a very good
agreement. In the present work, homogeneous rein-

forced structures are considered. The aim of
reinforcement is to provide static or dynamic stiffness
and strength. The problem of analysis and optimization

is solved using the coupled BEM/FEM and the EA [3],
respectively. The design variables of the problem are
dimensions of the structure.

2. A coupled boundary and finite element method

In the present approach, the direct coupling of the BE
and FE matrices, by transforming the FE matrices into
an equivalent BE-type, is performed. The FE nodal
forces are transformed into the BE tractions by using a

special transformation matrix [4].
Consider the body subjected to dynamic load and

consisting of two different materials occupying regions

�1 and �2 as shown in Fig. 1. The �1 domain is pre-
dominant and it is modeled as a plate by the BEM. The
�2 domain is modeled as a beam by the FEM. The

external boundary of the plate is �1 and the interface
connecting two materials is �12. The numerical solution
is obtained after dividing the body into the boundary
and finite elements. For the �1 region, the dual reci-

procity BEM [5] allows the formulation of the following
system of equations of motion in a matrix form:
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and for the �2 region the governing FEM equations are:

M21Ü
21 þ K21U21 ¼ T21P21 ð2Þ

where M represents the mass matrices, H and G are the
BEM coefficients matrices, K is the FEM stiffness
matrix, and T is the matrix that expresses the relation-

ship between the FE nodal forces and the BE tractions;
U, €U and P are respectively displacement, acceleration
and traction vectors. The superscripts denote the

matrices that correspond to the appropriate boundaries.
The displacement compatibility conditions and the
traction equilibrium conditions over the interface �12

are:

U12 ¼ U21;P12 ¼ �P21 ð3Þ

Using the above conditions in Eq. (1) and (2), the whole
system of equations for the structure in Fig. 1 can be
rearranged as:
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where ~P21 denotes prescribed tractions at the interface.
The above system of equations is rearranged according
to the boundary conditions and solved step-by-step

giving the unknown displacements and tractions on the

external boundary and the interface at each time step.

The method can be used for the static analysis by
assuming that the accelerations of all nodes are equal
zero.

3. Numerical examples

The linear-elastic, isotropic and homogeneous rein-
forced cantilever plate shown in Fig. 2, is considered.
The reinforcement is applied at the whole non-fixed

outer boundary and at the interface between two BE
regions (plates). The plate is subjected to static or
dynamic loads. Two criteria of optimization, the same

for statics and dynamics, are used: (1) maximization of
stiffness of the body and (2) minimization of support
tractions. The first objective function is the maximum
vertical displacement uA at point A (see Fig. 2). The

second objective function is the maximum resultant
traction T(y) at the fixed boundary. The objective
functions are minimized with respect to design variables

H1,H2 and L1, L2, defining dimensions of the structure.
The length and height of the structure are respectively

L=50 cm and H=40 cm. The other dimensions are:

a=5cm, b=1cm, c=5cm and g=1cm. The values
of the H1, H2 and L1, L2 variables belong to the
intervals from 0 to 25 cm and 15 to 35 cm, respectively.

For the dynamic problem, the plate is subjected to the
sinusoidal load p(t)= posin(2�t/T). The amplitude of
the load is po=1MPa and the period of time is
T=5ms. The time of analysis (Houbolt scheme) is

12ms and the time step �t=0.02ms. The material of
the structure is steel in plane stress, for which modulus
of elasticity is E=210GPa, Poisson’s ratio �=0.3 and

density �=7860 kg/m3.

Fig. 2. Reinforced cantilever plate.
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The total number of boundary elements is 84. The

total number of finite elements is 72. The quadratic
elements (with 2 degrees of freedom per node) are
employed for the BEMmesh. The beam elements (with 3

degrees of freedom per node) are used for the FEM
mesh. The number of boundary and finite elements is
constant, which simplifies significantly the modification

of BE and FE discretization.
In all examples the number of chromosomes in the

population is 10 and the number of generations is 200.

For each example 10 tests are performed.

3.1. Maximization of stiffness

In this example the results of optimization for statics

and dynamics are presented. Initially, the computations
are performed for the so called reference plate, for which
the values of design variables are: H1=10 cm, H2=20

cm and L1=L2=25 cm.

The criterion of optimization is maximization of

stiffness of the body. The results of optimization using
the EA are presented in Table 1. Two different solutions
are obtained for the static and dynamic problem.

However, the values of the objective function are simi-
lar, the shape of the structure is different. The decrease
of the maximal displacement for the optimal structure in

comparison with the reference plate is about 48 and
56%, while the reduction of total weight is about 14 and
13%, for the static and dynamic problems respectively.

The influence of the reinforcement on stiffness of the
reference plates was also investigated. In this case, the
reduction of the maximal static and dynamic displace-
ment at point A is about 50%, in comparison with plates

without reinforcement.

3.2. Minimization of support tractions

The criterion of optimization is minimization of

tractions at the fixed boundary (see Fig. 2). The results

Table 1

Results of optimization – maximization of stiffness

Test

No.

Statics Dynamics

H1 H2 L1 L2 UA H1 H2 L1 L2 UA

[cm] [10�5 cm] [cm] [10�5 cm]

1 25.00 25.00 30.58 35.00 188.01 25.00 25.00 29.74 35.00 245.46

2 25.00 25.00 30.59 35.00 188.01 25.00 25.00 29.74 35.00 245.46

3 25.00 25.00 30.59 35.00 188.01 25.00 25.00 29.74 35.00 245.46

4 25.00 25.00 30.59 35.00 188.01 25.00 25.00 29.74 35.00 245.46

5 25.00 25.00 30.62 35.00 188.01 25.00 25.00 29.74 35.00 245.46

6 11.08 25.00 15.00 35.00 188.32 25.00 25.00 29.74 35.00 245.46

7 11.09 25.00 15.00 35.00 188.32 25.00 25.00 29.74 35.00 245.46

8 11.09 25.00 15.00 35.00 188.32 25.00 25.00 29.74 35.00 245.46

9 11.10 25.00 15.00 35.00 188.32 10.02 25.00 15.00 35.00 253.16

10 11.11 25.00 15.00 35.00 188.32 10.14 25.00 15.10 35.00 253.33

Table 2

Results of optimization – minimization of support tractions

Test

No.

Statics Dynamics

H1 H2 L1 L2 T H1 H2 L1 L2 T

[cm] [MPa] [cm] [MPa]

1 10.10 25.00 15.00 35.00 15.41 10.39 25.00 15.00 34.98 19.47

2 10.11 25.00 15.00 35.00 15.41 10.39 25.00 15.00 34.98 19.47

3 10.11 25.00 15.00 35.00 15.41 10.39 25.00 15.00 34.98 19.47

4 10.11 25.00 15.00 35.00 15.41 10.39 25.00 15.00 34.98 19.47

5 10.12 25.00 15.00 35.00 15.41 10.39 25.00 15.00 34.98 19.47

6 9.73 2.78 15.00 35.00 15.42 10.39 25.00 15.00 34.98 19.47

7 9.73 2.79 15.00 35.00 15.42 10.39 25.00 15.00 34.98 19.47

8 9.74 2.75 15.00 35.00 15.42 10.52 24.76 15.00 35.00 19.47

9 9.74 2.82 15.00 35.00 15.42 11.90 23.17 15.00 34.89 19.47

10 9.75 2.77 15.00 35.00 15.42 11.90 23.17 15.00 34.89 19.47
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of optimization using the EA are presented in Table 2.
As in the previous example, for the static problem

similar values of the objective functions, for different
shapes of the structure, are obtained. The decrease of the
maximal traction for the optimal structure is about 33

and 44%, for the static and dynamic problems respec-
tively. The total weight has increased by 1% in both
cases, in comparison with the reference plate. The

influence of the reinforcement on strength of the refer-
ence plates was also investigated. In this case, the
reduction of the maximal resultant static and dynamic
traction at the fixed boundary is about 25%, in com-

parison with non-stiffened plates.
The optimal structures for the two considered criteria

of optimization are shown in Fig. 3. One can observe

(see Tables 1 and 2) that the shape of the optimal plates
for the static and dynamic problems is very similar.

4. Conclusions

In the paper, the coupled BEM/FEM and the evolu-
tionary algorithm are used in optimization of statically
or dynamically loaded reinforced structures. The rein-

forcement has improved static or dynamic stiffness and
strength. The decrease of maximal displacements and
tractions for the optimal structures is significant, in

comparison with plates before optimization.
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Fig. 3. Optimal plates: (a) maximization of stiffness and (b)

minimization of support tractions.
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