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Abstract

Based on Donnell shallow shell equations, this work discusses the influence of geometric imperfections on the
parametric instability and snap-through buckling of empty and fluid-filled cylindrical shells under axial loads. In
particular, the influence of imperfections on the evolution of basins of attraction is studied in detail. As parameters are

varied, basins of attraction undergo quantitative and qualitative changes that may affect seriously the safety and
stability of the shell.
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1. Introduction

A detailed review of studies on geometrically non-
linear vibrations and dynamic instability of empty and
fluid-filled cylindrical shells is found in Amabili and
Paı̈doussis [1]. Recently, Gonçalves and Del Prado [2]

and Pellicano and Amabili [3] studied the dynamic
instability of simply supported circular cylindrical shells
subjected to harmonic axial loads. In the present study,

a low-dimensional model that retains the essential non-
linear terms is used to study the effect of initial
imperfections on the nonlinear oscillations and

instabilities of the shell. To study the nonlinear behavior
of the shell, several numerical strategies are used to
obtain time response, Poincaré maps, bifurcation dia-
grams, and basins of attraction. The fluid is modeled as

nonviscous and incompressible.

2. Problem formulation

Consider a thin-walled fluid-filled circular cylindrical

shell of radius R, length L, and thickness h made of an
elastic, homogeneous, and isotropic material with
Young’s modulus E, Poisson ratio �, and mass per unit

area M. The axial, circumferential, and radial coordi-
nates are denoted by, respectively, x, y, and z, and the

corresponding displacements on the shell surface are, in
turn, denoted by u, v, and w. The nonlinear equations of

motion based on Donnell shallow shell theory, in terms
of a stress function f and the transversal displacement w,
are given by [2]:

M €wþ �1 _wþ �2r4 _wþDr4w ¼ phRþ F;yyw;xxþ

F;xx w;yy
1

R

� 

� 2F;xyw;xy ð1Þ

1

Eh
r4f ¼ � 1

R
wd;xx þ �wi;xxwd;yy � wd;xxwi;yy�

�


wd;xxwd;yyÞ þ 2wi;xywd;xy þ w2
d;xy

�
ð2Þ

where F = f F + f, f F¼ � 1
2 P0y
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2 P1cosð!tÞy2;

PðtÞ ¼ P0 þ P1cosð!tÞ; wi are the initial geometric

imperfections, ph is the fluid pressure, H4 is the bihar-
monic operator, �1 and �2 are damping coefficients, and
D is the flexural rigidity defined as D = Eh3/12 (1�v2).
Also, Po is the uniform static load applied along the

edges x=0, L, P1 is the magnitude of the harmonic load,
t is time, and ! is the forcing frequency.
The lateral deflection w can be described generally as

[2,4]:
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where n is the number of waves in the circumferential
direction of the basic buckling or vibration mode, and m

is the number of half-waves in the axial direction, � =
y/R and &=x/L.

The initial geometric imperfections are considered as:

Wi ¼ �11 cosðn�Þ sen ðm�&Þ þ�02 cosð2m�&Þ ð4Þ

where �11 and �02 are the amplitudes of the geometric
imperfections.

The irrotational motion of an incompressible and

nonviscous fluid can be described by a velocity potential
�(x,r,�, t), which must satisfy the Laplace equation. The
hydrodynamic fluid pressure is [4]:

ph ¼ 
11;��ma cosðn�Þsinðm��Þ; with ma ¼ ð�FRÞ
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where ma is the added mass due to the fluid contained in
shell, �F is the density of the fluid, �S is the shell material

density, and In�1 and In are Bessel functions.

3. Numerical results

Consider a thin cylindrical shell with h=0.002m,

R=0.2m, L=0.4m, E=2.1 � 108 kN/m2, v=0.3,
M=78.5 kg/m2, and �1=2"M!o, with "=0.003 (fluid-
filled shell) and "=0.0008 (empty shell), and �2=
D
with 
=0.0001, �s=7850 kg/m3, and �f=2450 kg/m3.

For this geometry, the lowest natural frequency occurs
for (n,m)=(5,1). Fig. 1 shows the evolution of the
basin of attraction of the perfect shell for increasing

values of the forcing amplitude �1 (�1.=P1/Pcr). The
associated bifurcation diagram is shown in Fig. 1a. The
black area corresponds to the fundamental trivial solu-

tion, the light and dark gray areas correspond to the

Fig. 1. Cross-sections of the basins of attraction for increasing values of the forcing amplitude �1 of the fluid-filled cylindrical shell.

�0 = 0.80 and � = 0.65. (a) Bifurcation diagram. (b) �1 =0.02. (c) �1 =0.074. (d) �1 = 0.08. (e) �1 = 0.15. (f) �1 = 0.23.
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Fig. 2. Influence of geometric imperfections on the bifurcation diagrams – principal parametric instability region. Geometric

imperfection in modes �11 and �02. �0 = 0.80. (a) � = 0.59 – subcritical. (b) � = 0.70 – supercritical.

Fig. 3. Basins of attraction for increasing values of geometric imperfections. � = 0.70, �0 = 0.80 e �1 = 0.20. �2
11=10 (a) �11=0.00

�02=0.00. (b) �11=0.10 �02=�0.001. (c) �11=0.20 �02=�0.004. (d) �11=0.30 �02=�0.009. (e) �11=0.40 �02=�0.016. (f) �11=0.50

�02=�0.025.
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period-two stable solutions within the prebuckling well,

while the white area corresponds to escape (snap-
through buckling). As �1 increases, the region associated
with the stable solutions decreases and a rapid erosion is

observed. Also, after a certain critical value, the whole
basin of attraction becomes fractal. So, the response
becomes very sensitive to the initial conditions and the

steady-state response is unpredictable. Fig. 2 illustrates
the influence of imperfections on two typical bifurcation
diagrams of the principal region of parametric instabil-
ity. Fig. 3 shows the evolution of the basin of attraction

for increasing values of geometric imperfections and
� = 0.70, �0 = 0.80, and �1 = 0.20. In these cross-
sections of the four-dimensional phase space ( _�11 =
_�02 = 0.0), the black and gray regions correspond to
perturbations that produce stable period-two responses
and the white region corresponds to initial conditions

that lead to escape from the prebuckling potential well.
The geometric imperfections have a high influence on
the topology of the basin of attraction. When the

imperfections increase, the basin that initially is sym-
metric in �11 begins to show a strong asymmetry in �11.
Again, the stable basin of attraction is eroded swiftly as
the imperfection magnitude increases. Fig. 4 shows the

variation of the stable area of the basin of attraction as a
function of the imperfection magnitude.

4. Concluding remarks

Based on Donnell’s shallow shell equations, an accu-
rate low-dimensional model is derived and applied to the

study of the nonlinear vibrations of an axially loaded
empty and fluid-filled imperfect circular cylindrical shell.
The evolution and erosion of transient and permanent

basin boundaries are analyzed, and their influence on
the safety of the shell is discussed. Usually basin
boundaries become fractal. This, together with the pre-
sence of catastrophic subcritical bifurcations, makes the

shell very sensitive to initial conditions, uncertainties in
system parameters, and initial imperfections.

References

[1] Amabili M, Paı̈doussis MP. Review of studies on geo-

metrically nonlinear vibrations and dynamics of circular

cylindrical shells and panels, with and without fluid–

structure interaction. Appl Mech Rev ASME

2003;56:349–381.
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Fig. 4. Erosion of the stable region of the basin of attraction as a function of the imperfection amplitude. (a) � = 0.59 and �1 = 0.075.

(b) � = 0.70 and �1 = 0.20.
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