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Abstract

The dynamic transfer of energy between phonon and phason modes in icosahedral quasicrystals is investigated,
taking into account uncertainties in the value of phonon–phason coupling coefficient.
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1. Introduction

Analysis of X-ray diffraction patterns obtained from
experiments on Al–Pb–Mn-based alloys has shown the
existence of crystalline microstructures admitting icosa-

hedral phase [1]. Bodies with such structures do not fit
the rules summarized in the classification of crystal-
lographic finite groups and for this reason are called

quasicrystals (IQ). They are intrinsically quasiperiodic
because lattices with icosahedral symmetry cannot fill
the three-dimensional Euclidean space. Quasiperiodicity

is assured by the presence of alterations of the crystalline
lattice due to (i) collective atomic modes and (ii) tun-
neling of atoms below energetic barriers separating
places at a distance less than the atomic diameter. Such

substructural changes altering locally the material phase
(thus referred to as phason activity) occur also in
incommensurate intergrowth compounds (IIC), which

are still quasiperiodic alloys but their quasiperiodicity is
not intrinsic; rather, it is the result of modifications of
originally periodic structures [2].

In modeling the mechanical behavior of IQ and IIC, it
is not sufficient to describe the morphology of the
material element only by means of its place in space as in
standard elasticity, because geometrical information

about substructural changes within the material element
due to phason activity would be absent in this way. A
morphological coarse-grained descriptor of the collec-

tive atomic modes within crystalline cells needs to be

introduced by following the format of multifield theories
[3,4] describing bodies with complex substructural

morphology. In particular, to describe morphological
changes in quasicrystals, two entities are necessary: the
displacement field u and a vector field w, which repre-

sents additional atomic (phason) modes within each
crystalline cell. Interactions associated with phason
changes (i.e. with the rate of w) arise and are balanced

appropriately. Their balance is additional to that of
standard forces, which are power-conjugated only with
deformation (phonon) modes.

In a dynamic regime, we may recognize waves of
phonon and phason nature. Their interaction may be
associated with a transfer of energy from micro-
structural to gross level, and vice versa. For IIC and IQ,

the energetic landscape is different. In the diffraction
scenarios obtained by X-ray scattering experiments,
diffuse scattering is registered around Bragg peaks in

both cases. However, for IIC there are six sound-like
branches while in the case of IQ only three sound-like
branches appear most often. As a consequence, kinetic

energy can be attributed to the phason activity in the
case of IIC, while for IQ there may be a type of internal
friction leading to viscous-like evolution rather than true
inertia effects. In other words, the collective atomic

modes appearing in both IIC and IQ seem to have dif-
ferent natures; better, they develop in different physical
circumstances [5,6]. Since in the case of IIC, at each

point X the vector w represents the relative displacement
of incommensurate sublattices, it is strictly a measure of
deformation and does enter the structure of the free

energy together with the gradient Hw of w. It does not
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happen to IQ where only Hw appears in the list of
constitutive entries of the energy. The partial derivatives

of the energy with respect to w and Hw represent at
thermodynamic equilibrium self-forces within the
material element and phason stresses between neigh-

boring material elements.
We follow a general (in a sense, unified) way to

represent the mechanics of IIC and IQ [7,8] and restrict

our attention to linear constitutive relations. We analyze
different cases: (i) the presence of phason inertia, (ii) the
presence of phason friction in absence of phason inertia,
(iii) the contemporary presence of phason friction and

inertia, and (iv) the absence of phason evolution (limit
case).
In all of the above-listed circumstances, we analyze

the spectral properties of the modified acoustic tensor
accounting for phason modes. Such a tensor includes the
coefficient of phonon–phason coupling. There is some

experimental indeterminacy in the value of such a
coefficient in linear constitutive equations. By taking
into account such a circumstance, we analyze the spec-

tral properties of the modified acoustic tensor as the
phonon–phason coupling coefficients varies in a given
range suggested by experiments. Our analysis allows to
recognize conditions for which critical phenomena

occur: they are associated with possible breaking and
reconstruction of phonon and phason waves due to
exchange of energy between material levels.

2. Elasticity for quasiperiodic alloys

A regular region B of the three-dimensional Euclidean
point space E3 is occupied by a quasicrystalline body in
its reference place. X indicates the generic point of it

where a material element is collapsed. If we consider the
material element as a perfect crystalline cell, then during
a motion

B� ½0; t
� 2ðX; tÞ ! x ¼ x
ðX; tÞ 2 E3

developing in an interval of time [0,t*], the standard
displacement field u = u*(X, t) = x� X is the descriptor
of the phonon degrees of freedom, i.e. of the standard

waves.
In the case of quasiperiodic alloys, the material ele-

ment is not a perfect cell because collective atomic

modes and/or tunneling of atoms below energy barriers
occur inside it and are represented by a sufficiently
smooth vector field w*. During a motion, we then have:

B� ½0; t
� 2ðX; tÞ ! w ¼ w
ðX; tÞ 2 Vec

where Vec is the translation space over E3.
The dynamics of a quasicrystalline alloy are ruled by a

Hamilton principle of the type

�

Z
B�½0;t
�

0:5 � x:k k2þ�
 w:k k2
� 	

þ eðru; w; rwÞþ
�

UðxÞÞ dX3 ^ dt ¼ 0

where U(�) is the potential of possible external bulk
forces, � the density of mass, and �* an ‘effective’ density
of mass associated with phonon modes, � indicates

variation and e(�) is the elastic energy.
Appropriate Euler–Lagrange equations are given by

DivPþ b ¼ �x:: and DivS� z ¼ �
w::

where P = @Hue is the first Piola–Kirchhoff stress, S =

@Hw e the phason stress associated with contact inter-
actions between neighboring material elements as a
consequence of phason changes, z = @we the self-force

within each material element, and b = gradU the vector
of body forces.
In infinitesimal deformation regime, the first Piola–

Kirchhoff stress P ‘coincides’ with Cauchy stress � , for
IQ also z disappears and the constitutive equations take
the form [9]

� ¼ Cruþ K0rw; S ¼ K0
Truþ Krw

where the fourth-order tensors C, K, and K0 are,

respectively, the standard stiffness, the phason con-
stitutive tensor, and the phonon–phason coupling
constitutive tensor. For a two-dimensional quasicrystal

with fivefold symmetry, C is the isotropic elastic tensor,
and

Kijkl ¼ K1 �ik �jl þK2ð�ij �kl � �il �jkÞ;
K0 ijkl ¼ K3 ð�i1 � �i2Þ ð�ij �kl � �ik �jl þ �il �jkÞ

depend on three real constants K1, K2 and K3.

3. Interaction between phonon and phason modes

Planar waves in IQ satisfy the ansatz

u ¼ U exp½iðk � x� !tÞ� w ¼W exp½iðkw � x��tÞ�

U and W denote the polarization of the phonon and
phasonic waves, respectively, k and kw are the wave

vectors, and ! and � are the cyclic frequencies. By
substitution in the balance equations, in absence of body
forces, we get

Auð!;�Þ 0

0 Awð!;�Þ


 �
U

W


 �
¼ 0

0


 �
ð1Þ

where ! and � are eigenvalues. Matrices Au and Aw

depend on the four acoustic tensors

Bu
ik ¼ Cijklklkj; Bw;coup

ik ¼ K0ijklk
w
l k

w
j ;

Bu;coup
ki ¼ K0klijklkj; Bw

ik ¼ Kijklk
w
l k

w
j ;
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in the following way:

Au ¼ ðBu;coupÞT þ ½Bw � �
 �2I� ðBw;coupÞ�1½�!2I� Bu�;

Aw ¼ Bw;coup þ ½�!2I� Bu� ðBw;coupÞ�T½Bw � �
 �2I�

Preliminary results are shown in Figs. 1, 2, and 3 for the

case �*= 0, relevant for IQ, and for specific values of K1

and K2. In this case, only the phonon frequency !
appears as an eigenvalue in Eq. (1). The components of
the wave vectors for the three figures are given by

k=(1,0) and k
w = (1, 0.1) (Fig. 1); k=(1,0) and k

w =
(1, 1) (Fig. 2); and k = (1,0) and kw = (1, 10) (Fig. 3).
Plots of !2 [s�2] versus the constant K3 [Nm�2] are

depicted. It is shown that beyond a specific value of K3

phonon waves cannot propagate.

Acknowledgments

The support of the Italian National Group for

Mathematical Physics (GNFM-INDAM) (PMM) and
that of the Italian Ministry of Education, University and
Research (grant MIUR-PRIN 2004: ‘Problemi e Mod-

elli Microstrutturali: Applicazioni in Ingegneria
Strutturale e Civile) (MG) is acknowledged.

References

[1] Shechtman D, Blech I, Gratias D, Cahn JW. Metallic

phase with long-range orientational order and no trans-

lational symmetry. Phys Rev Lett 1984;53:1951–1954.

[2] Lifshitz R. Quasicrystals: a matter of definition. Found

Phys 2003;33:1703–1711.

[3] Capriz G. Continua with Microstructure. Berlin: Springer-

Verlag, 1989.

[4] Mariano PM. Multifield theories in mechanics of solids.

Adv Appl Mech 2001;38:1–93.

[5] Rochal SB, Lorman VL. Anisotropy of acoustic-phonon

properties of an icosahedral quasicrystal at high tem-

perature due to phonon-phason coupling, Phys Rev B

2000;62:874–879.

[6] Rochal SB, Lorman VL. Minimal model of the phonon–

phason dynamics in icosahedral quasicrystals and its

application to the problem of internal friction in the i-

AlPbMn alloy. Phys Rev B 2002;66:144204 (1–9).

[7] Mariano PM. Non-linear hydrodynamics of incommen-

surate intergrowth compounds and quasicrystals. 2004

[8] Mariano PM. Mechanics of quasiperiodic alloys, 2005.

[9] Hu C, Wang R, Ding D-H. Symmetry groups, physical

property tensors, elasticity and dislocations in quasicrys-

tals. Rep Prog Phys 2000;63:1–39.

Fig. 1. Plot of !2 [s�2] vs. the coupling modulus K3 [Nm�2] for

IQ, for k=(1,0), kw=(1,0.1).

Fig. 2. Plot of !2 [s�2] vs. the coupling modulus K3 [Nm�2] for

IQ, for k=(1,0), kw=(1,1).

Fig. 3. Plot of !2 [s�2] vs. the coupling modulus K3 [Nm�2] for

IQ, for k=(1,0), kw=(1,10).
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