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Abstract

In this paper, we introduce a reliable and efficient a posteriori error estimator for the approximation of an eigenvalue

problem using Brezzi–Douglas–Marini finite element spaces of any order. According to the author’s knowledge, it is the
first time that an a posteriori error analysis for mixed approximation of an eigenvalue problem is developed. Indeed,
other authors see Duran et al. in [1] used the equivalence between the mixed finite element method of Raviart-Thomas

of the lowest order and the non-conforming piece-wise linear approximation of Crouzeix and Raviart.
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1. Introduction

In this paper, we present an a posteriori error esti-
mator for the Brezzi–Douglas–Marini approximation of

an eigenvalue problem that arises from the displacement
formulation to compute the vibration modes of an
acoustic fluid contained within a rigid cavity. We define
an error estimator of the residual type and prove that,

under some conditions on the regularity of the con-
tinuous eigensolution, it is equivalent to the H (div)-
norm of the error up to higher-order terms. The con-

stants involved in this equivalence depend on the
corresponding eigenvalue but are independent of the
mesh size. Moreover, the square root of the error in the

approximation of the eigenvalues is also bounded by a
constant multiplied by the estimator. These results are
exposed in a concise way in Theorem (11).

2. Statement of the problem

We consider the following eigenvalue problem: find 	
2 C such that there exists u 6¼ 0 such that

�r div u ¼ 	u in �
rot u ¼ 0 in �
u � n ¼ 0 on @�;

8<
: ð1Þ

where � � R
2 is a simply connected polygonal domain,

@� is its boundary and n is its outward normal unit
vector.
This problem has been studied by many authors

concerning fluid–structure interaction [2, 3]. Moreover,
since in two dimensions the divergence and rotational
operators are isomorphic, it is equivalent to Maxwell’s
eigenproblem for a cavity resonator with dielectric

constant " and magnetic permeability � constant and
equal to 1 [4,5].
We shall use the standard notation for the Sobolev

spaces Hm(�), their norms k km and seminorms j jm.
A variational formulation of Eq. (1) reads: find 	 2 C

s.t. there exists u 2 H0(div, �), with u 6¼ 0:

ðdiv u; div vÞ ¼ 	ðu; vÞ 8v 2 H0ðdiv; �Þ
ðu; rotqÞ ¼ 0 8q 2 H1

0 ð�Þ;

�
ð2Þ

where (,) denotes the L2-inner product and H0(div, �) =

{v 2 [L2(�)]2: div v 2 L2(�) and v � n = 0 on @�} is
endowed with the norm vk k2div¼ vk k20þ div vk k20. It is well
known that Eq. (2) admits a countable set of real and

positive eigenvalues. Moreover, the eigenfunctions
satisfy u 2 Hs (div, �) = {v 2 [Hs (�)]2 : div v 2 Hs(�)},
for some s > 1

2 depending on � (s = 1 when � is convex)

[6].
Let {J h} be a regular family of triangulations of �,

where as usual h denotes the maximum diameter of the
elements K in J h. The Brezzi–Douglas–Marini spaces

are defined for k 	 1 by
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BDMk ¼ fv 2 H ðdiv; �Þ : v Kj 2 ½PkðKÞ�2 8K 2 J hg;

where Pk(K) denotes the space of polynomial of degree
at most k on K [7].

Setting Vh = BDMk \H0(div, �), and denoting by Qh

the subspace of H1
0ð�Þ consisting of continuous piece-

wise polynomial of degree at most k + 1, the discrete

problem is then given by: find 	h 2 R s.t. there exists uh 2
Vh, with uh 6¼ 0:

ðdiv uh; div vÞ ¼ 	hðuh; vÞ 8v 2 Vh

ðuh; rot qÞ ¼ 0 8q 2 Qh

�
ð3Þ

Let (	, u) be an eigensolution of Eq. (2), such that 	 is
a simple eigenvalue and kuk0 = 1. It follows from the

abstract theory [8, 9] and known a priori estimates that,
for h small enough (depending on 	), there exists (	h, uh)
eigenpair of Eq. (3) with kuhk0 = 1, such that

u� uhk kdiv¼ OðhtÞ ð4Þ
u� uhk k0¼ OðhrÞ ð5Þ
	� 	hj j ¼ Oðh2tÞ ð6Þ

where t = min {s, k} and r = min {s,k + 1}.
Our goal is to estimate a posteriori the error in the

approximation of the eigensolutions. From now on, we
will denote by eh = u � uh the error in the approxima-

tion of the eigenfunctions.

3. Residual-based a posteriori error estimator

In this section, we present the error estimator and
state the results that allow us to prove that it is
equivalent, up to higher-order terms, to the H (div)-
norm of the error, when the continuous eigensolution u

is smooth enough. We will report the details of the
proofs in a forthcoming paper.
First, we introduce some notation. Let E be the set of

the interior edges of the mesh and EK � E be the subset
of edges of K.
The following lemmas provide the residual equations

that will be the starting points of our error analysis:
Lemma 1 For v 2 H0 (div, �) there holds

ðdiv eh; div vÞ � ð	u� 	huh; vÞ ¼ �ðdiv uh; div vÞþ
	hðuh; vÞ

¼
X
k2J h

ðr1; vÞK �
1

2

X
e2EK

Z
e

div uh½ �½ �v � nÞ
" #

; ð7Þ

where r1 = H div uh + 	huh is the residual of the first

equation of Eq. (1).
Lemma 2 For q 2 H1

0 (�) there holds

ðeh; rot qÞ ¼
X
K2J h

ðr2; qÞK þ
1

2

X
e2EK

Z
e

q uh � t½ �½ �
" #

; ð8Þ

where r2 = � rot uh is the residual of the second equation
of Eq. (1) and, for each triangle K, t denotes its unit

tangent vector oriented counterclockwise.
For any K 2 J h, we define two local error indicators

by


21;K ¼ h2K r1k k20;Kþ
1

2

X
e2EK

he div uh½ �½ �k k20;e;


22;K ¼ h2K r2k k20;Kþ
1

2

X
e2EK

he uh � t½ �½ �k k20;e;

and the corresponding error estimators by


1 ¼
X
K2J h


21;K

 !1
2

;


2 ¼
X
K2J h


22;K

 !1
2

:

Then the following propositions hold true:
Proposition 3 There exists a positive constant C, inde-

pendent of h, such that

ehk k0 � C div ehk k0þC
2: ð9Þ

Proposition 4 There holds

div ehk k20 � C	 div ehk k0ð
1 þ 
2Þ þ C	

2
2 þ ð	u� 	huh; ehÞ;

ð10Þ

where C	 is a positive constant dependent on 	.
Since kuk0 = kuhk0 = 1, the last term in Eq. (10) can

be written as

ð	u� 	huh; ehÞ ¼ ð	þ 	hÞ½1� ðu; uhÞ� ¼
	þ 	h

2
ehk k20
ð11Þ

and hence if the continuous eigensolution is smooth
enough (i.e. u 2 Hs (�, div) for some s 	 k + 1), then by
the a priori estimate in Eq. (5), it turns out to be higher

order than k div ehk20. In order to have that 
22 is a
higher-order term as well, it is enough to prove that the
local error indicator 
2,K, is efficient, namely such that


2,K � C ehk k0;K
 , where K* denotes the union of all
elements sharing an edge with K and C is a constant
depending only on the regularity of the elements of K*.
Indeed, if 
2,K � C ehk k0;K
 , then 
2 � C ehk0

�� , with C

constant depending only on the regularity of the mesh.
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3.1. Local upper bound for 
2,K

In this section, we show that the error indicator 
2,K,
is bounded above by the L2-norm of the error in the
neighbourhood of the element K. Indeed, the following

results hold true:
Proposition 5 There exists a constant C, depending

only on the regularity of the element K, such that

h2K r2k k20;K � C ehk k20;K:

For any interior edge �e 2 E, let K1
�e and K2

�e denote the two

elements in J h sharing �e.
Proposition 6 Let �e 2 E. There exists a constant C,

depending only on the regularity of K1
�e and K2

�e , such that

1

2
h �e uh � t½ �½ �k k20; �e � C ehk k20;K1

�e
[K2

�e
:

We can therefore state the following result:
Theorem 7 There exists a constant C, depending only on

the regularity of the mesh, such that


2 � C ehk k0:

Moreover, the following local estimate holds:


2;K � C ehk k0;K
 ;

with C constant depending only on the regularity of the
elements K of K*.

3.2. Local upper bound for 
1,K

In this section, we show that the error indicator 
1,K is
bounded above by the L2-norm of the divergence of the

error in the neighbourhood of the element K. This,
together with the result of the previous section, yields
the efficiency of the error indicator 
1,K + 
2,K. Indeed,
the following results hold:

Proposition 8 There exists a constant C, depending only
on the regularity of K, such that

hK r1k k0;K � C div ehk k0;KþhK 	u� 	huhk k0;K
� 	

:

Proposition 9 Let �e 2 E. There exists a constant C,
depending only on the regularity of K1

�e and K2
�e , such that

1

2
h
1
2

�e div uh½ �½ �k k0; �e � C div ehk k0;K1
�e
[K2

�e
þh �e 	u� 	huhk k0;K1

�e
[K2

�e

� 	
:

As a consequence of the above propositions, we state
the following theorem:

Theorem 10 There exists a constant C, depending only
on the regularity of the elements of K*, such that


1;K � C div ehk k0;K
þhK 	u� 	huhk k0;K

� 	

:

The term hK 	u� 	hehk k0;K
 in the previous theorem is
a higher-order term. Indeed, for each element K 0 2 J h

hK0 	u� 	huhk k0;K 0 � 	� 	hj jhK 0 uhk k0;K0þ	hK 0 ehk k0;K 0

� Ch2tþ1 þ 	hK 0 ehk k0;K 0 ;

the last inequality because of the a priori estimate in Eq.
(6). Note that the right-hand side is asymptotically

negligible with respect to the local error div ehk k0;K 0 .
Putting together the results of theorems 7 and 10, we

show that the error indicator 
1,K + 
2,K is bounded

above by the local error, up to a multiplicative constant
and higher-order terms, namely,


1;K þ 
2;K � C ehk kdiv;K
þOðh2tþ1Þ þOðhKÞ ehk k0;K
 :

We are now ready to state the main result of our error

analysis.
Theorem 11 Let us assume that u 2 Hk+1 (div, �).

Then there exist two constants C1
	 and C2

	, depending on 	
and on the regularity of the mesh, and a constant C
depending only on the regularity of the mesh, such that

ehk kdiv � C1
	ð
1 þ 
2Þ þ h:o:t: ð12Þ


1;K þ 
2;K � C ehk kdiv;K
þh:o:t: ð13Þ

	� 	hj j
1
2 � C2

	ð
1 þ 
2Þ þ h:o:t: ð14Þ

Therefore, it follows from Eqs (12) and (14) that our
estimator is reliable. On the other hand, Eq. (13) tell us

that 
1,K + 
2,K is an efficient local error indicator, in the
sense that when 
1,K + 
2,K is large, then the error in the
vicinity of the element K must also be large. Hence, 
1,K
+ 
2,K can be used as the basis of an adaptive refinement
algorithm.
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